Catherine Labbaye
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catherine Labbaye.
Nature Medicine | 2008
Désirée Bonci; Valeria Coppola; Antonio Addario; Raffaella Giuffrida; Lorenzo Memeo; Leonardo D'Urso; Alfredo Pagliuca; Mauro Biffoni; Catherine Labbaye; Monica Bartucci; Giovanni Muto; Cesare Peschle; Ruggero De Maria
MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.
Nature Cell Biology | 2008
Catherine Labbaye; Isabella Spinello; Maria Teresa Quaranta; Elvira Pelosi; Luca Pasquini; Eleonora Petrucci; Mauro Biffoni; Eugenia Rosa Nuzzolo; Monia Billi; Robin Foà; Ercole Brunetti; Francesco Grignani; Ugo Testa; Cesare Peschle
MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects. In vitro assays showed that PLZF interacts with and inhibits the miR-146a promoter, and that miR-146a targets CXCR4 mRNA, impeding its translation. In megakaryopoietic cultures of CD34+ progenitors, PLZF was upregulated, whereas miR-146a expression decreased and CXCR4 protein increased. MiR-146a overexpression and PLZF or CXCR4 silencing impaired megakaryocytic (Mk) proliferation, differentiation and maturation, as well as Mk colony formation. Mir-146a knockdown induced the opposite effects. Rescue experiments indicated that the effects of PLZF and miR-146a are mediated by miR-146a and CXCR4, respectively. Our data indicate that megakaryopoiesis is controlled by a cascade pathway, in which PLZF suppresses miR-146a transcription and thereby activates CXCR4 translation.
Journal of Hematology & Oncology | 2012
Catherine Labbaye; Ugo Testa
MicroRNA (miRs) represent a class of small non-coding regulatory RNAs playing a major role in the control of gene expression by repressing protein synthesis at the post-transcriptional level. Studies carried out during the last years have shown that some miRNAs plays a key role in the control of normal and malignant hgematopoiesis. In this review we focus on recent progress in analyzing the functional role of miR-146a in the control of normal and malignant hematopoiesis. On the other hand, this miRNA has shown to impact in the control of innate immune responses. Finally, many recent studies indicate a deregulation of miR-146 in many solid tumors and gene knockout studies indicate a role for this miRNA as a tumor suppressor.
Oncogene | 2004
Federica Felicetti; Lisabianca Bottero; Nadia Felli; Gianfranco Mattia; Catherine Labbaye; Ester Alvino; Cesare Peschle; Mario P. Colombo; Alessandra Carè
The promyelocytic leukemia zinc finger (PLZF) protein has been described as a transcriptional repressor of homeobox (HOX)-containing genes during embryogenesis. As we previously demonstrated a functional link between overexpression of HOXB7 and melanoma progression, we investigated the lack of PLZF as the possible cause of HOXB7 constitutive activation in these neoplastic cells. Accordingly, we found PLZF expression in melanocytes, but not in melanoma cells, a pattern inversely related to that of HOXB7. PLZF retroviral gene transduction was then performed in a panel of melanoma cell lines, and tumorigenicity was compared with that of empty vector-transduced control cell lines. Evaluation of in vitro migration, invasion and adhesion indicated that PLZF gene transduction induced a less malignant phenotype, as confirmed through in vivo studies performed in athymic nude mice. This reduced tumorigenicity was not coupled with HOXB7 repression. In order to find more about the molecular targets of PLZF, the gene expression profiles of PLZF- and empty vector-transduced A375 melanoma cells were analysed by Atlas Cancer macroarray. Among several genes modulated by PLZF enforced expression, of particular interest were integrin αvβ3, osteonectin/SPARC and matrix metalloprotease-9 that were downmodulated, and the tyrosinase-related protein-1 that was upregulated in all the analysed samples. This profile confirms the reduced tumorigenic phenotype with reversion to a more differentiated, melanocyte like, pattern, thus suggesting a suppressor role for PLZF in solid tumors. Moreover, these results indicate that PLZF and HOXB7 are functionally independent and that their coupled deregulation may account for most of the alterations described in melanomas.
Oncogene | 2002
Catherine Labbaye; Maria Teresa Quaranta; Alfredo Pagliuca; Stefania Militi; Jonathan D. Licht; Ugo Testa; Cesare Peschle
We investigated the expression of the PLZF gene in purified human hematopoietic progenitors induced to unilineage erythroid, granulocytic or megakaryocytic differentiation and maturation in serum-free culture. PLZF is expressed in quiescent progenitors: the expression level progressively rises through megakaryocytic development, whereas it gradually declines in erythroid and granulopoietic culture. To investigate the role of PLZF in megakaryopoiesis, we transduced the PLZF gene into the erythro-megakaryocytic TF1 cell line. PLZF overexpression upmodulates the megakaryocytic specific markers (CD42a, CD42b, CD61, PF4) and induces the thrombopoietin receptor (TpoR). The proximal promoter of the TpoR gene is activated in PLZF-expressing TF1 cells: in this promoter region, a PLZF DNA-binding site was identified by deletion constructs studies. Interestingly, PLZF and GATA1 proteins coimmunoprecipitate in PLZF-expressing TF1 cells: enforced expression of both PLZF and GATA1 in TF1 cells results in increased upregulation of megakaryocytic markers, as compared to exogenous PLZF or GATA1 alone, suggesting a functional role for the PLZF/GATA1 complex. Our data indicate that PLZF plays a significant stimulatory role in megakaryocytic development, seemingly mediated in part by induction of TpoR expression at transcriptional level. This stimulatory effect is potentiated by physical interaction of PLZF and GATA1, which are possibly assembled in a multiprotein transcriptional complex.
Blood Cancer Journal | 2011
Isabella Spinello; Maria Teresa Quaranta; Roberta Riccioni; Viviana Riti; Luca Pasquini; Alessandra Boe; Elvira Pelosi; Antonella Vitale; Robin Foà; Ugo Testa; Catherine Labbaye
CXCR4 is a negative prognostic marker in acute myeloid leukemias (AMLs). Therefore, it is necessary to develop novel ways to inhibit CXCR4 expression in leukemia. AMD3100 is an inhibitor of CXCR4 currently used to mobilize cancer cells. CXCR4 is a target of microRNA (miR)-146a that may represent a new tool to inhibit CXCR4 expression. We then investigated CXCR4 regulation by miR-146a in primary AMLs and found an inverse correlation between miR-146a and CXCR4 protein expression levels in all AML subtypes. As the lowest miR-146a expression levels were observed in M5 AML, we analyzed the control of CXCR4 expression by miR-146a in normal and leukemic monocytic cells and showed that the regulatory miR-146a/CXCR4 pathway operates during monocytopoiesis, but is deregulated in AMLs. AMD3100 treatment and miR-146a overexpression were used to inhibit CXCR4 in leukemic cells. AMD3100 treatment induces the decrease of CXCR4 protein expression, associated with miR-146a increase, and increases sensitivity of leukemic blast cells to cytotoxic drugs, this effect being further enhanced by miR-146a overexpression. Altogether our data indicate that miR-146a and AMD3100, acting through different mechanism, downmodulate CXCR4 protein levels, impair leukemic cell proliferation and then may be used in combination with anti-leukemia drugs, for development of new therapeutic strategies.
Oncogene | 1999
Catherine Labbaye; Mauro Valtieri; Francesco Grignani; R Puglisi; L Luchetti; B Masella; Myriam Alcalay; Ugo Testa; Cesare Peschle
The expression of the PML gene was investigated in purified early hematopoietic progenitor cells (HPCs) induced to unilineage erythroid or granulocytic differentiation. PML mRNA and protein, while barely detectable in quiescent HPCs, are consistently induced by growth factor stimulation through the erythroid or granulocytic lineage. Thereafter, PML is downmodulated in late granulocytic maturation, whereas it is sustainably expressed through the erythroid pathway. In functional studies, PML expression was inhibited by addition of antisense oligomers targeting PML mRNA (α-PML). Interestingly, early treatment (day 0 HPCs) with α-PML reduced the number of both erythroid and granulocytic colonies, whereas late treatment (day 5 culture) reduced erythroid, but not granulocytic, clonogenesis. These findings suggest that PML is required for early hematopoiesis and erythroid, but not granulocytic maturation. The pattern of PML expression in normal hematopoiesis mimics that of retinoblastoma pRb 105. Combined treatment of HPCs with α-PML and α-Rb oligomers inhibited both PML and Rb protein expression and completely blocked erythroid colony development. Furthermore, PML and pRb 105 were co-immunoprecipitated in cellular lysates derived from erythroid precursors indicating that this functional interaction may have a biochemical basis. These results suggest a key functional role of PML in early hematopoiesis and late erythropoiesis: the latter phenomenon may be related to the molecular and functional interaction of PML with pRb 105.
Oncogene | 2009
Isabella Spinello; Maria Teresa Quaranta; Luca Pasquini; Elvira Pelosi; Eleonora Petrucci; A Pagliuca; Germana Castelli; Gualtiero Mariani; Daniela Diverio; Robin Foà; Ugo Testa; Catherine Labbaye
The promyelocytic leukemia zinc-finger protein (PLZF) is a transcription factor and c-kit is a receptor tyrosine kinase associated with human disease, particularly in hematopoietic cells. MicroRNAs (miRs) are post-transcriptional regulators of gene expression, and c-kit has been described as a target of miRs-221 and -222 in erythropoiesis. In the present study, we identified c-kit as a target of PLZF in normal and leukemic cells. Particularly, in erythropoietic (E) culture of CD34+ progenitors, PLZF is downregulated, whereas c-kit expression at both the mRNA and protein levels inversely increases during the first days of E differentiation. In functional experiments, PLZF transfection induces c-kit downregulation, inhibits E proliferation and delays differentiation, whereas PLZF knockdown induces opposite effects, independently of miRs-221 and -222 expression. The inverse correlation between PLZF and c-kit expression was found in normal CD34+38+/− hematopoietic progenitor/stem cells and in acute myeloid leukemias of M0/M1 French–American–British subtypes, suggesting that the control of PLZF on c-kit expression may be crucial at the level of the stem cell/progenitor compartment. Altogether, our data indicate a new mechanism of regulation of c-kit expression that involves a transcriptional control by PLZF in CD34+ cells and early erythropoiesis.
Journal of Biological Chemistry | 2010
Benedetta Artegiani; Catherine Labbaye; Antonella Sferra; Maria Teresa Quaranta; Paola Torreri; Gianfranco Macchia; Marina Ceccarini; Tamara C. Petrucci; Pompeo Macioce
α and β dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of β-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the β-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that β-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that β-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of β-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that β-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.
British Journal of Haematology | 1990
Marco Gabbianelli; Elvira Pelosi; Catherine Labbaye; Mauro Valtieri; Ugo Testa; Cesare Peschle
Reactivation of HbF synthesis has been reported in normal adult erythroblast colonies (‘bursts’) generated by erythroid progenitors (BFU‐E) after seeding peripheral blood mononuclear cells (PBMC) in fetal calf serum‐supplemented (FCS+) semisolid cultures stimulated by erythropoietin (Ep). Reactivation is almost totally suppressed when: (i) PBMC are grown in optimized FCS‐ culture or (ii) PBMC are first stringently depleted of monocytes and then plated in FCS+ medium (i.e. BFU‐E growth in FCS+Mo‐ culture). In either case, addition of biosynthetic granulocyte‐macrophage colony stimulating factor (GM‐CSF) induces a dose‐related increase of relative HbF synthesis up to the level in FCS+ culture.