Elvy Lapointe
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elvy Lapointe.
Nature Structural & Molecular Biology | 2009
Julian P. Venables; Roscoe Klinck; ChuShin Koh; Julien Gervais-Bird; Anne Bramard; Lyna Inkel; Mathieu Durand; Sonia Couture; Ulrike Froehlich; Elvy Lapointe; Jean-François Lucier; Philippe Thibault; Claudine Rancourt; Karine Tremblay; Panagiotis Prinos; Benoit Chabot; Sherif Abou Elela
Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.
Cancer Research | 2008
Julian P. Venables; Roscoe Klinck; Anne Bramard; Lyna Inkel; Geneviève Dufresne-Martin; ChuShin Koh; Julien Gervais-Bird; Elvy Lapointe; Ulrike Froehlich; Mathieu Durand; Daniel Gendron; Jean-Philippe Brosseau; Philippe Thibault; Jean-François Lucier; Karine Tremblay; Panagiotis Prinos; Raymund J. Wellinger; Benoit Chabot; Claudine Rancourt; Sherif Abou Elela
Breast cancer is the most common cause of cancer death among women under age 50 years, so it is imperative to identify molecular markers to improve diagnosis and prognosis of this disease. Here, we present a new approach for the identification of breast cancer markers that does not measure gene expression but instead uses the ratio of alternatively spliced mRNAs as its indicator. Using a high-throughput reverse transcription-PCR-based system for splicing annotation, we monitored the alternative splicing profiles of 600 cancer-associated genes in a panel of 21 normal and 26 cancerous breast tissues. We validated 41 alternative splicing events that significantly differed in breast tumors relative to normal breast tissues. Most cancer-specific changes in splicing that disrupt known protein domains support an increase in cell proliferation or survival consistent with a functional role for alternative splicing in cancer. In a blind screen, a classifier based on the 12 best cancer-associated splicing events correctly identified cancer tissues with 96% accuracy. Moreover, a subset of these alternative splicing events could order tissues according to histopathologic grade, and 5 markers were validated in a further blind set of 19 grade 1 and 19 grade 3 tumor samples. These results provide a simple alternative for the classification of normal and cancerous breast tumor tissues and underscore the putative role of alternative splicing in the biology of cancer.
Molecular and Cellular Biology | 2008
Julian P. Venables; ChuShin Koh; Ulrike Froehlich; Elvy Lapointe; Sonia Couture; Lyna Inkel; Anne Bramard; Eric Paquet; Valérie Watier; Mathieu Durand; Jean-François Lucier; Julien Gervais-Bird; Karine Tremblay; Panagiotis Prinos; Roscoe Klinck; Sherif Abou Elela; Benoit Chabot
ABSTRACT Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.
Arthritis Research & Therapy | 2000
Henri A. Ménard; Elvy Lapointe; Moulay Driss Rochdi; Zhi J Zhou
The Sa system is a recently described immune system that has a specificity and positive predictive value of nearly 100% for rheumatoid arthritis (RA) in Asia, Europe and the Americas. Its sensitivity of 30-40% suggests that it identifies a subset of RA patients. Anti-Sa antibodies are present from disease onset and are predictive of disease severity. The immune reactants are plentiful in the target tissue: antigen is present in the synovium, IgG antibody in the fluid. Immunologically, Sa is a hapten-carrier antigen in which vimentin is the carrier and citrulline is the hapten. The citrullination of vimentin is closely related to apoptosis, and citrullinated vimentin is extremely sensitive to digestion by the ubiquitous calpains. Nevertheless, Sa is found in only a few cell lines. Calpastatin, the natural specific inhibitor of calpains, is also a RA-associated, albeit non-specific, autoimmune system. Is it possible that calpain-related apoptotic pathways could be prominent in cells containing Sa? The task is to reconcile the specificity of Sa/citrullinated proteins in a multifactorial and polygenic disease such as RA.
Molecular and Cellular Biology | 2013
Julian P. Venables; Jean-Philippe Brosseau; Gilles Gadea; Roscoe Klinck; Panagiotis Prinos; Jean-François Beaulieu; Elvy Lapointe; Mathieu Durand; Philippe Thibault; Karine Tremblay; François Rousset; Jamal Tazi; Sherif Abou Elela; Benoit Chabot
ABSTRACT Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.
Molecular and Cellular Biology | 2012
Laetitia Michelle; Alexandre Cloutier; Johanne Toutant; Lulzim Shkreta; Philippe Thibault; Mathieu Durand; Daniel Garneau; Daniel Gendron; Elvy Lapointe; Sonia Couture; Hervé Le Hir; Roscoe Klinck; Sherif Abou Elela; Panagiotis Prinos; Benoit Chabot
ABSTRACT Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-xS splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.
Nature Structural & Molecular Biology | 2011
Panagiotis Prinos; Daniel Garneau; Jean-François Lucier; Daniel Gendron; Sonia Couture; Marianne Boivin; Jean-Philippe Brosseau; Elvy Lapointe; Philippe Thibault; Mathieu Durand; Karine Tremblay; Julien Gervais-Bird; Hanad Nwilati; Roscoe Klinck; Benoit Chabot; Jean-Pierre Perreault; Raymund J. Wellinger; Sherif Abou Elela
Most human genes produce multiple mRNA isoforms through alternative splicing. However, the biological relevance of most splice variants remains unclear. In this study, we evaluated the functional impact of alternative splicing in cancer cells. We modulated the splicing pattern of 41 cancer-associated splicing events and scored the effects on cell growth, viability and apoptosis, identifying three isoforms essential for cell survival. Specifically, changing the splicing pattern of the spleen tyrosine kinase gene (SYK) impaired cell-cycle progression and anchorage-independent growth. Notably, exposure of cancer cells to epithelial growth factor modulated the SYK splicing pattern to promote the pro-survival isoform that is associated with cancer tissues in vivo. The data suggest that splicing of selected genes is specifically modified during tumor development to allow the expression of isoforms that promote cancer cell survival.
RNA | 2010
Jean-Philippe Brosseau; JEAN-FRANCxOIS Lucier; Elvy Lapointe; Mathieu Durand; Daniel Gendron; Julien Gervais-Bird; Karine Tremblay; Jean-Pierre Perreault; Sherif Abou Elela
Most human messenger RNAs (mRNAs) are alternatively spliced and many exhibit disease-specific splicing patterns. However, the contribution of most splicing events to the development and maintenance of human diseases remains unclear. As the contribution of alternative splicing events to diagnosis and prognosis is becoming increasingly recognized, it becomes important to develop precise methods to quantify the abundance of these isoforms in clinical samples. Here we present a pipeline for real-time PCR annotation of splicing events (RASE) that allows accurate identification of a large number of splicing isoforms in human tissues. The RASE automatically designed specific primer pairs for 81% of all alternative splicing events in the NCBI build 36 database. Experimentally, the majority of the RASE designed primers resulted in isoform-specific amplification suitable for quantification in human cell lines or in formalin-fixed, paraffin-embedded (FFPE) RNA extract. Using this pipeline it is now possible to rapidly identify splicing isoform signatures in different types of human tissues or to validate complete sets of data generated by microarray expression profiling and deep sequencing techniques.
RNA | 2014
Jean-Philippe Brosseau; Jean-François Lucier; Hanad Nwilati; Philippe Thibault; Daniel Garneau; Daniel Gendron; Mathieu Durand; Sonia Couture; Elvy Lapointe; Panagiotis Prinos; Roscoe Klinck; Jean-Pierre Perreault; Benoit Chabot; Sherif Abou-Elela
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.
Nucleic Acids Research | 2014
Jean-Philippe Brosseau; Jean-François Lucier; Andrée-Anne Lamarche; Lulzim Shkreta; Daniel Gendron; Elvy Lapointe; Philippe Thibault; Eric Paquet; Jean-Pierre Perreault; Sherif Abou Elela; Benoit Chabot
Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5′ splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.