Roscoe Klinck
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roscoe Klinck.
Nature Structural & Molecular Biology | 2009
Julian P. Venables; Roscoe Klinck; ChuShin Koh; Julien Gervais-Bird; Anne Bramard; Lyna Inkel; Mathieu Durand; Sonia Couture; Ulrike Froehlich; Elvy Lapointe; Jean-François Lucier; Philippe Thibault; Claudine Rancourt; Karine Tremblay; Panagiotis Prinos; Benoit Chabot; Sherif Abou Elela
Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.
Nature Structural & Molecular Biology | 2009
Mariano Alló; Valeria Buggiano; Juan Pablo Fededa; Ezequiel Petrillo; Ignacio E. Schor; Manuel de la Mata; Eneritz Agirre; Mireya Plass; Eduardo Eyras; Sherif Abou Elela; Roscoe Klinck; Benoit Chabot; Alberto R. Kornblihtt
When targeting promoter regions, small interfering RNAs (siRNAs) trigger a previously proposed pathway known as transcriptional gene silencing by promoting heterochromatin formation. Here we show that siRNAs targeting intronic or exonic sequences close to an alternative exon regulate the splicing of that exon. The effect occurred in hepatoma and HeLa cells with siRNA antisense strands designed to enter the silencing pathway, suggesting hybridization with nascent pre-mRNA. Unexpectedly, in HeLa cells the sense strands were also effective, suggesting that an endogenous antisense transcript, detectable in HeLa but not in hepatoma cells, acts as a target. The effect depends on Argonaute-1 and is counterbalanced by factors favoring chromatin opening or transcriptional elongation. The increase in heterochromatin marks (dimethylation at Lys9 and trimethylation at Lys27 of histone H3) at the target site, the need for the heterochromatin-associated protein HP1α and the reduction in RNA polymerase II processivity suggest a mechanism involving the kinetic coupling of transcription and alternative splicing.
Cancer Research | 2008
Julian P. Venables; Roscoe Klinck; Anne Bramard; Lyna Inkel; Geneviève Dufresne-Martin; ChuShin Koh; Julien Gervais-Bird; Elvy Lapointe; Ulrike Froehlich; Mathieu Durand; Daniel Gendron; Jean-Philippe Brosseau; Philippe Thibault; Jean-François Lucier; Karine Tremblay; Panagiotis Prinos; Raymund J. Wellinger; Benoit Chabot; Claudine Rancourt; Sherif Abou Elela
Breast cancer is the most common cause of cancer death among women under age 50 years, so it is imperative to identify molecular markers to improve diagnosis and prognosis of this disease. Here, we present a new approach for the identification of breast cancer markers that does not measure gene expression but instead uses the ratio of alternatively spliced mRNAs as its indicator. Using a high-throughput reverse transcription-PCR-based system for splicing annotation, we monitored the alternative splicing profiles of 600 cancer-associated genes in a panel of 21 normal and 26 cancerous breast tissues. We validated 41 alternative splicing events that significantly differed in breast tumors relative to normal breast tissues. Most cancer-specific changes in splicing that disrupt known protein domains support an increase in cell proliferation or survival consistent with a functional role for alternative splicing in cancer. In a blind screen, a classifier based on the 12 best cancer-associated splicing events correctly identified cancer tissues with 96% accuracy. Moreover, a subset of these alternative splicing events could order tissues according to histopathologic grade, and 5 markers were validated in a further blind set of 19 grade 1 and 19 grade 3 tumor samples. These results provide a simple alternative for the classification of normal and cancerous breast tumor tissues and underscore the putative role of alternative splicing in the biology of cancer.
Molecular and Cellular Biology | 2008
Julian P. Venables; ChuShin Koh; Ulrike Froehlich; Elvy Lapointe; Sonia Couture; Lyna Inkel; Anne Bramard; Eric Paquet; Valérie Watier; Mathieu Durand; Jean-François Lucier; Julien Gervais-Bird; Karine Tremblay; Panagiotis Prinos; Roscoe Klinck; Sherif Abou Elela; Benoit Chabot
ABSTRACT Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.
Cancer Research | 2008
Roscoe Klinck; Anne Bramard; Lyna Inkel; Geneviève Dufresne-Martin; Julien Gervais-Bird; Richard Madden; Eric Paquet; ChuShin Koh; Julian P. Venables; Panagiotis Prinos; Manuela Jilaveanu-Pelmus; Raymund J. Wellinger; Claudine Rancourt; Benoit Chabot; Sherif Abou Elela
Intense efforts are currently being directed toward profiling gene expression in the hope of developing better cancer markers and identifying potential drug targets. Here, we present a sensitive new approach for the identification of cancer signatures based on direct high-throughput reverse transcription-PCR validation of alternative splicing events. This layered and integrated system for splicing annotation (LISA) fills a gap between high-throughput microarray studies and high-sensitivity individual gene investigations, and was created to monitor the splicing of 600 cancer-associated genes in 25 normal and 21 serous ovarian cancer tissues. Out of >4,700 alternative splicing events screened, the LISA identified 48 events that were significantly associated with serous ovarian tumor tissues. In a further screen directed at 39 ovarian tissues containing cancer pathologies of various origins, our ovarian cancer splicing signature successfully distinguished all normal tissues from cancer. High-volume identification of cancer-associated splice forms by the LISA paves the way for the use of alternative splicing profiling to diagnose subtypes of cancer.
Nature Structural & Molecular Biology | 2002
Adam Collier; José M. Gallego; Roscoe Klinck; Paul T. Cole; Stephen J. Harris; Geoffrey P. Harrison; Fareed Aboul-ela; Gabriele Varani; Stephen B. Walker
The hepatitis C virus (HCV) internal ribosome entry site (IRES) is recognized specifically by the small ribosomal subunit and eukaryotic initiation factor 3 (eIF3) before viral translation initiation. Using extensive mutagenesis and structure probing analysis, we show that the eIF3-binding domain of the HCV IRES contains an internal loop structure (loop IIIb) and an adjacent mismatched helix that are important for IRES-dependent initiation of translation. NMR studies reveal a unique three-dimensional structure for this internal loop that is conserved between viral isolates of varying primary sequence in this region. These data indicate that internal loop IIIb may be an attractive target for structure-based design of new antiviral agents.
Molecular and Cellular Biology | 2013
Julian P. Venables; Jean-Philippe Brosseau; Gilles Gadea; Roscoe Klinck; Panagiotis Prinos; Jean-François Beaulieu; Elvy Lapointe; Mathieu Durand; Philippe Thibault; Karine Tremblay; François Rousset; Jamal Tazi; Sherif Abou Elela; Benoit Chabot
ABSTRACT Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.
Chemistry & Biology | 2003
Georg Lentzen; Roscoe Klinck; Natalia Matassova; Fareed Aboul-ela; Alastair I.H. Murchie
Thiostrepton and micrococcin inhibit protein synthesis by binding to the L11 binding domain (L11BD) of 23S ribosomal RNA. The two compounds are structurally related, yet they produce different effects on ribosomal RNA in footprinting experiments and on elongation factor-G (EF-G)-dependent GTP hydrolysis. Using NMR and an assay based on A1067 methylation by thiostrepton-resistance methyltransferase, we show that the related thiazoles, nosiheptide and siomycin, also bind to this region. The effect of all four antibiotics on EF-G-dependent GTP hydrolysis and EF-G-GDP-ribosome complex formation was studied. Our NMR and biochemical data demonstrate that thiostrepton, nosiheptide, and siomycin share a common profile, which differs from that of micrococcin. We have generated a three-dimensional (3D) model for the interaction of thiostrepton with L11BD RNA. The model rationalizes the differences between micrococcin and the thiostrepton-like antibiotics interacting with L11BD.
Molecular and Cellular Biology | 2012
Laetitia Michelle; Alexandre Cloutier; Johanne Toutant; Lulzim Shkreta; Philippe Thibault; Mathieu Durand; Daniel Garneau; Daniel Gendron; Elvy Lapointe; Sonia Couture; Hervé Le Hir; Roscoe Klinck; Sherif Abou Elela; Panagiotis Prinos; Benoit Chabot
ABSTRACT Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-xS splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.
Nature Structural & Molecular Biology | 2011
Panagiotis Prinos; Daniel Garneau; Jean-François Lucier; Daniel Gendron; Sonia Couture; Marianne Boivin; Jean-Philippe Brosseau; Elvy Lapointe; Philippe Thibault; Mathieu Durand; Karine Tremblay; Julien Gervais-Bird; Hanad Nwilati; Roscoe Klinck; Benoit Chabot; Jean-Pierre Perreault; Raymund J. Wellinger; Sherif Abou Elela
Most human genes produce multiple mRNA isoforms through alternative splicing. However, the biological relevance of most splice variants remains unclear. In this study, we evaluated the functional impact of alternative splicing in cancer cells. We modulated the splicing pattern of 41 cancer-associated splicing events and scored the effects on cell growth, viability and apoptosis, identifying three isoforms essential for cell survival. Specifically, changing the splicing pattern of the spleen tyrosine kinase gene (SYK) impaired cell-cycle progression and anchorage-independent growth. Notably, exposure of cancer cells to epithelial growth factor modulated the SYK splicing pattern to promote the pro-survival isoform that is associated with cancer tissues in vivo. The data suggest that splicing of selected genes is specifically modified during tumor development to allow the expression of isoforms that promote cancer cell survival.