Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elwyn C. Firth is active.

Publication


Featured researches published by Elwyn C. Firth.


Journal of Anatomy | 2014

Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.

Sean Turley; Ashvin Thambyah; Christopher M. Riggs; Elwyn C. Firth; Neil D. Broom

The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage.


Physiological Reports | 2015

Different exercise modalities have distinct effects on the integrin‐linked kinase (ILK) and Ca2+ signaling pathways in the male rat bone

Dharani M. Sontam; Elwyn C. Firth; Peter Tsai; Mark H. Vickers; Justin M. O'Sullivan

Mechanical loading is essential to maintain optimal skeletal health. Despite the fact that early‐life exercise has positive, long‐lasting effects on the musculo‐skeletal system, the response of the musculo‐skeletal system to spontaneous low‐impact exercise has been poorly studied. Previously, we identified subtle morphological changes in the femoral diaphysis of exercised animals compared to nonexercised controls. We hypothesized that significant changes in gene expression of cells should precede significant measurable phenotypic changes in the tissues of which they are part. Here, we employed RNA‐Seq to analyse the transcriptome of the cortical bone from the femoral mid‐diaphysis of prepubertal male Sprague‐Dawley rats that were assigned to control (CON); bipedal stance (BPS); or wheel exercise (WEX) groups for 15 days. We identified 808 and 324 differentially expressed transcripts in the BPS and WEX animals respectively. While a number of transcripts change their levels in an exercise‐specific manner, we identified 191 transcripts that were differentially expressed in both BPS and WEX. Importantly, we observed that the exercise mode had diametrically opposite effects on transcripts for multiple genes within the integrin‐linked kinase (ILK) and Ca2+ signaling pathways such that they were up‐regulated in BPS and down‐regulated in WEX. The findings are important for our understanding of possible ways in which different exercise regimens might affect bone when normal activities apply mechanical stimuli during postnatal growth and development.


Menopause | 2017

A systematic review of the exercise effect on bone health: the importance of assessing mechanical loading in perimenopausal and postmenopausal women

Borja Sañudo; Moisés de Hoyo; Jesús del Pozo-Cruz; Luis Carrasco; Borja del Pozo-Cruz; Sergio Tejero; Elwyn C. Firth

Objective: The aims of this systematic review were to determine the general effects of exercise on areal bone mineral density (BMD) in perimenopausal and postmenopausal women, and to provide information on the most suitable bone-loading exercise regimens that may improve bone health in this population group. Methods: A computerized, systematic literature search was performed in the electronic databases PubMed, Web of Science, CINAHL, SPORTDiscus, and The Cochrane Library, from January 2005 to November 2015, to identify all randomized controlled trials related to exercise in perimenopausal and postmenopausal women. The initial search identified 915 studies, with a final yield of 10 studies. Only randomized controlled trials that examined the effects of exercise programs longer than 24 weeks in women aged 35 to 70 years were included. The 10 studies quantified at least BMD and described training variables adequately (training period, frequency, volume, intensity). Results: Ten studies with moderate quality evidence (6.4 ± 1.8 points, range 4-9) were included. Significant changes in lumbar and femoral neck BMD were found mainly with high-impact exercise and whole body vibration interventions. Conclusions: While training effects must be interpreted with caution because of the heterogeneity of the protocols and exercises performed, this systematic review confirmed the effectiveness of impact exercises combined with other forms of training (vibration or strength training) to preserve BMD in perimenopausal and postmenopausal women. Despite the results possibly not representing a general dose-response relationship, we highlight the importance of quantifying loading intensity and frequency by means of accelerometry as these parameters are determinants for bone adaptation.


Journal of Veterinary Diagnostic Investigation | 2017

Mechanisms of bone response to injury

Keren E. Dittmer; Elwyn C. Firth

Bone, despite its relatively inert appearance, is a tissue that is capable of adapting to its environment. Wolff’s law, first described in the 19th century, describes the ability of bone to change structure depending on the mechanical forces applied to it. The mechanostat model extended this principle and suggested that the amount of strain a bone detects depends on bone strength and the amount of muscle force applied to the bone. Experimental studies have found that low-magnitude, high-frequency mechanical loading is considered to be the most effective at increasing bone formation. The osteocyte is considered to be the master regulator of the bone response to mechanical loading. Deformation of bone matrix by mechanical loading is thought to result in interstitial fluid flow within the lacunar–canalicular system, which may activate osteocyte mechanosensors, leading to changes in osteocyte gene expression and ultimately increased bone formation and decreased bone resorption. However, repetitive strain applied to bone can result in microcracks, which may propagate and coalesce, and if not repaired predispose to catastrophic fracture. Osteocytes are a key component in this process, whereby apoptotic osteocytes in an area of microdamage promote targeted remodeling of the damaged bone. If fractures do occur, fracture repair can be divided into 2 types: primary and secondary healing. Secondary fracture repair is the most common and is a multistage process consisting of hematoma formation and acute inflammation, callus formation, and finally remodeling, whereby bone may return to its original form.


PLOS ONE | 2018

Statistical modeling of the equine third metacarpal bone incorporating morphology and bone mineral density

Helen Liley; Ju Zhang; Elwyn C. Firth; Justin Fernandez; Thor F. Besier

The objective of this study was to describe the three-dimensional shape and subchondral bone mineral density (BMD) variation of the equine distal third metacarpal bone (MC3) using a statistical shape model. The association between form and function builds upon previous two-dimensional observations of MC3 epiphyseal structure. It was expected that the main source of variation would be an increase in overall MC3 bone size, correlated to an increase in subchondral BMD. Geometry and bone mineral density was obtained from CT image data of 40 healthy Thoroughbred horses. This was used to create a statistical shape model, in which the first ten components described 75% of the variation in geometry and BMD. The first principal component described an increase in overall size of the MC3 distal epiphysis, coupled with higher BMD on the disto-palmar and dorso-proximal surfaces. The second component was qualitatively described as an increased convexity of the sagittal ridge at the dorsal junction of the epiphysis and the metaphysis, coupled to increased BMD in that region. The third component showed an increase in lateral condylar surface area relative to medial condylar area. As the condyle reduced in relative surface area, the BMD at both dorsal condyles increased. The statistical shape analysis produced a compact description of 3-D shape and sub-chondral bone mineral density variation for the third metacarpal bone. This study uniquely illustrates the shape variations in a sample population of MC3 bones, and the corresponding changes in subchondral BMD.


Scientific Reports | 2017

Neonatal leptin treatment reverses the bone-suppressive effects of maternal undernutrition in adult rat offspring

Elwyn C. Firth; Greg Gamble; Jillian Cornish; Mark H. Vickers

Alterations in the early life environment, including maternal undernutrition (UN) during pregnancy, can lead to increased risk of metabolic and cardiovascular disorders in offspring. Leptin treatment of neonates born to UN rats reverses the programmed metabolic phenotype, but the possible benefits of this treatment on bone tissue have not been defined. We describe for the first time the effects of neonatal leptin treatment on bone in adult offspring following maternal UN. Offspring from either UN or ad libitum-fed (AD) rats were treated with either saline or leptin (2.5 µg/ g.d on postnatal days (D)3–13) and were fed either a chow or high fat (HF) diet from weaning until study completion at D170. Analysis of micro-tomographic data of the left femur showed highly significant effects of UN on cortical and trabecular bone tissue indices, contributing to inferior microstructure and bone strength, almost all of which were reversed by early leptin life treatment. The HF fat diet negatively affected trabecular bone tissue, but the effects of only trabecular separation and number were reversed by leptin treatment. The negative effects of maternal UN on skeletal health in adult offspring might be prevented or attenuated by various interventions including leptin. Establishment of a minimal efficacious leptin dose warrants further study.


PLOS ONE | 2017

Post-weaning high-fat diet results in growth cartilage lesions in young male rats

Samuel S. Haysom; Mark H. Vickers; Lennex H. Yu; Clare M. Reynolds; Elwyn C. Firth; Sue R. McGlashan

To determine if a high-fat diet (HF) from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX) or cage only activity (SED) after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC) was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression.


Frontiers in Physiology | 2017

A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet

Dharani M. Sontam; Mark H. Vickers; Elwyn C. Firth; Justin M. O'Sullivan

Studies have reported opposing effects of high-fat (HF) diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a HF diet has not been addressed. We investigated whether early-life (before onset of sexual maturity at 6 weeks of age) voluntary physical activity can modulate the effects of a HF diet on male Sprague Dawley rats. In the bone marrow, early-life HF diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. The bone marrow of the rats that undertook wheel exercise while on a HF diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise. Our results are consistent with the marrow adipose tissue having a unique response to HF feeding in the presence or absence of exercise.


Computer Methods in Biomechanics and Biomedical Engineering | 2017

Using partial least squares regression as a predictive tool in describing equine third metacarpal bone shape

Helen Liley; Ju Zhang; Elwyn C. Firth; Justin Fernandez; Thor F. Besier

Abstract Population variance in bone shape is an important consideration when applying the results of subject-specific computational models to a population. In this letter, we demonstrate the ability of partial least squares regression to provide an improved shape prediction of the equine third metacarpal epiphysis, using two easily obtained measurements.


Computer Methods in Biomechanics and Biomedical Engineering | 2017

The effect of the sagittal ridge angle on cartilage stress in the equine metacarpo-phalangeal (fetlock) joint

Helen Liley; H. M. S. Davies; Elwyn C. Firth; Thor F. Besier; Justin Fernandez

Abstract Fatigue failure of bones of the metacarpo-phalangeal (fetlock, MCP) joint is common in thoroughbred racehorses. Stresses within the fetlock joint cartilages are affected by the morphology of the third metacarpal bone (MC3) and proximal phalangeal bone, and the steepness of the median sagittal ridge of MC3 is believed to be associated with fracture. This study investigated the influence of the steepness of the sagittal ridge on cartilage stress distribution using a finite element model of the joint. Changes to the steepness of the sagittal ridge were made by applying a parabolic function to the mesh, creating four different models with sagittal ridge angles ranging from 95° to 105°. In the fetlock joint of Thoroughbred racehorses, sagittal ridge angles of >100° were associated with higher Von Mises stresses in cartilage at the palmar aspect of the condylar groove than such stresses in joints with sagittal ridge angles of <100°. Stresses were high in the specific region where fractures are known to originate in MC3. This aspect of morphology of the fetlock joint thus appears to play an important role in the magnitude and distribution of cartilage stresses, which, when acting on the underlying hard tissues of the articular calcified cartilage and subchondral bone may play a role in the initiation of fatigue fracture in the third metacarpal bone.

Collaboration


Dive into the Elwyn C. Firth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.N. Barker

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Liley

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

Ju Zhang

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.S. Haysom

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge