Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thor F. Besier is active.

Publication


Featured researches published by Thor F. Besier.


Medicine and Science in Sports and Exercise | 2001

Anticipatory effects on knee joint loading during running and cutting maneuvers.

Thor F. Besier; David G. Lloyd; Timothy R. Ackland; Jodie Cochrane

PURPOSE To determine how unanticipated performance of cutting maneuvers in sport affects the external loads applied to the knee joint and the potential risk for ligament injury. METHODS A 50-Hz VICON motion analysis system was used to determine the lower limb kinematics of 11 healthy male subjects during running and cutting tasks performed under preplanned (PP) and unanticipated (UN) conditions. Subjects performed the UN tasks in response to a light stimulus on a target board. A kinematic model was then used in conjunction with force place data to calculate the three-dimensional loads at the knee joint. RESULTS External flexion/extension moments at the knee joint were similar between PP and UN conditions; however, the varus/valgus and internal/external rotation moments during the UN cutting tasks were up to twice the magnitude of the moments measured during the PP condition. CONCLUSION Cutting maneuvers performed without adequate planning may increase the risk of noncontact knee ligament injury due to the increased external varus/valgus and internal/external rotation moments applied to the knee. These results are probably due to the small amount of time to make appropriate postural adjustments before performance of the task, such as the position of the foot on the ground relative to the body center of mass. Subsequently, training for the game situation should involve drills that familiarize players with making unanticipated changes of direction. Practice sessions should also incorporate plyometrics and should focus on better interpretation of visual cues to increase the time available to preplan a movement.


Medicine and Science in Sports and Exercise | 2003

Muscle activation strategies at the knee during running and cutting maneuvers

Thor F. Besier; David G. Lloyd; Timothy R. Ackland

PURPOSE The purpose of this article was to investigate the activation patterns of muscles surrounding the knee during preplanned (PP) and unanticipated (UN) running and cutting tasks, with respect to the external moments applied to the joint. It was hypothesized that activation strategies during PP tasks would correspond to the magnitude and direction of the external loads applied to the knee joint, and the muscle activation patterns would differ between PP and UN tasks. METHODS Eleven healthy male subjects performed a series of running and cutting tasks under PP and UN conditions. Activation from 10 knee muscles were determined using full-wave rectified, filtered, and normalized EMG calculated during a precontact phase and two epochs across the stance phase. Knee joint flexor and extensor muscle group ratios indicated the level of co-contraction. Individual muscles were also grouped into medial/lateral and internal/external rotation muscle groups, based upon their ability to counter externally applied varus/valgus and internal/external rotation joint loads, respectively. RESULTS Selective activation of medial/lateral and internal/external rotation muscles and co-contraction of flexors and extensors were used to stabilize the joint under PP conditions, whereas generalized co-contraction strategies were employed during the UN condition. Net muscle activation during the UN sidestepping tasks increased by 10-20%, compared with an approximately 100% increase in applied varus/valgus and internal/external rotation joint moments. CONCLUSION In PP conditions, activation patterns appear to be selected to support the external loads experienced at the knee, e.g., medial muscles activated to resist applied valgus moments. Under UN conditions, there was no selective activation of muscles to counter the external knee load, with generalized co-contraction being the activation pattern adopted. These findings have implications for the etiology of noncontact knee ligament injuries.


Journal of Orthopaedic Research | 2012

Grand Challenge Competition to Predict In Vivo Knee Loads

Benjamin J. Fregly; Thor F. Besier; David G. Lloyd; Scott L. Delp; Scott A. Banks; Marcus G. Pandy; Darryl D. D'Lima

Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model‐based treatment design is validation of model‐based estimates of in vivo contact and muscle forces. This paper introduces an annual “Grand Challenge Competition to Predict In Vivo Knee Loads” based on a series of comprehensive publicly available in vivo data sets for evaluating musculoskeletal model predictions of contact and muscle forces in the knee. The data sets come from patients implanted with force‐measuring tibial prostheses. Following a historical review of musculoskeletal modeling methods used for estimating knee muscle and contact forces, we describe the first two data sets used for the first two competitions and summarize four subsequent data sets to be used for future competitions. These data sets include tibial contact force, video motion, ground reaction, muscle EMG, muscle strength, static and dynamic imaging, and implant geometry data. Competition participants create musculoskeletal models to predict tibial contact forces without having access to the corresponding in vivo measurements. These blinded predictions provide an unbiased evaluation of the capabilities and limitations of musculoskeletal modeling methods. The paper concludes with a discussion of how these unique data sets can be used by the musculoskeletal modeling research community to improve the estimation of in vivo muscle and contact forces and ultimately to help make musculoskeletal models clinically useful.


Journal of Biomechanics | 2009

Muscle and external load contribution to knee joint contact loads during normal gait

C.R. Winby; David G. Lloyd; Thor F. Besier; T.B. Kirk

Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.


Journal of Biomechanics | 2009

Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls.

Thor F. Besier; Michael Fredericson; Garry E. Gold; Gary S. Beaupre; Scott L. Delp

One proposed mechanism of patellofemoral pain, increased stress in the joint, is dependent on forces generated by the quadriceps muscles. Describing causal relationships between muscle forces, tissue stresses, and pain is difficult due to the inability to directly measure these variables in vivo. The purpose of this study was to estimate quadriceps forces during walking and running in a group of male and female patients with patellofemoral pain (n = 27, 16 female; 11 male) and compare these to pain-free controls (n = 16, 8 female; 8 male). Subjects walked and ran at self-selected speeds in a gait laboratory. Lower limb kinematics and electromyography (EMG) data were input to an EMG-driven musculoskeletal model of the knee, which was scaled and calibrated to each individual to estimate forces in 10 muscles surrounding the joint. Compared to controls, the patellofemoral pain group had greater co-contraction of quadriceps and hamstrings (p = 0.025) and greater normalized muscle forces during walking, even though the net knee moment was similar between groups. Muscle forces during running were similar between groups, but the net knee extension moment was less in the patellofemoral pain group compared to controls. Females displayed 30-50% greater normalized hamstring and gastrocnemius muscle forces during both walking and running compared to males (p<0.05). These results suggest that some patellofemoral pain patients might experience greater joint contact forces and joint stresses than pain-free subjects. The muscle force data are available as supplementary material.


Journal of Orthopaedic Research | 2009

Using Real-Time MRI to Quantify Altered Joint Kinematics in Subjects with Patellofemoral Pain and to Evaluate the Effects of a Patellar Brace or Sleeve on Joint Motion

Christine E. Draper; Thor F. Besier; Juan M. Santos; Fabio Jennings; Michael Fredericson; Garry E. Gold; Gary S. Beaupre; Scott L. Delp

Abnormal patellofemoral joint motion is a possible cause of patellofemoral pain, and patellar braces are thought to alleviate pain by restoring normal joint kinematics. We evaluated whether females with patellofemoral pain exhibit abnormal patellofemoral joint kinematics during dynamic, weight‐bearing knee extension and assessed the effects of knee braces on patellofemoral motion. Real‐time magnetic resonance (MR) images of the patellofemoral joints of 36 female volunteers (13 pain‐free controls, 23 patellofemoral pain) were acquired during weight‐bearing knee extension. Pain subjects were also imaged while wearing a patellar‐stabilizing brace and a patellar sleeve. We measured axial‐plane kinematics from the images. Females with patellofemoral pain exhibited increased lateral translation of the patella for knee flexion angles between 0°and 50° (p = 0.03), and increased lateral tilt for knee flexion angles between 0° and 20° (p = 0.04). The brace and sleeve reduced the lateral translation of the patella; however, the brace reduced lateral displacement more than the sleeve (p = 0.006). The brace reduced patellar tilt near full extension (p = 0.001), while the sleeve had no effect on patellar tilt. Our results indicate that some subjects with patellofemoral pain exhibit abnormal weight‐bearing joint kinematics and that braces may be effective in reducing patellar maltracking in these subjects. Published by Wiley Periodicals, Inc. J Orthop Res 27: 571–577, 2009


Journal of Orthopaedic Research | 2013

Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis

Pete B. Shull; Amy Silder; Rebecca Shultz; Jason L. Dragoo; Thor F. Besier; Scott L. Delp; Mark R. Cutkosky

This study examined the influence of a 6‐week gait retraining program on the knee adduction moment (KAM) and knee pain and function. Ten subjects with medial compartment knee osteoarthritis and self‐reported knee pain participated in weekly gait retraining sessions over 6 weeks. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and a 10‐point visual‐analog pain scale score were measured at baseline, post‐training (end of 6 weeks), and 1 month after training ended. Gait retraining reduced the first peak KAM by 20% (p < 0.01) post‐training as a result of a 7° decrease in foot progression angle (i.e., increased internal foot rotation), compared to baseline (p < 0.01). WOMAC pain and function scores were improved at post‐training by 29% and 32%, respectively (p < 0.05) and visual‐analog pain scale scores improved by two points (p < 0.05). Changes in WOMAC pain and function were approximately 75% larger than the expected placebo effect (p < 0.05). Changes in KAM, foot progression angle, WOMAC pain and function, and visual‐analog pain score were retained 1 month after the end of the 6‐week training period (p < 0.05). These results show that a 6‐week gait retraining program can reduce the KAM and improve symptoms for individuals with medial compartment knee osteoarthritis and knee pain.


Osteoarthritis and Cartilage | 2011

Prediction of Glycosaminoglycan Content in Human Cartilage by Age, T1ρ and T2 MRI

Kathryn E. Keenan; Thor F. Besier; John M. Pauly; E. Han; Jarrett Rosenberg; R.L. Smith; Scott L. Delp; Gary S. Beaupre; Garry E. Gold

OBJECTIVE A relationship between T1ρ relaxation time and glycosaminoglycan (GAG) content has been demonstrated in chemically degraded bovine cartilage, but has not been demonstrated with quantitative biochemistry in human cartilage. A relationship has also been established between T2 relaxation time in cartilage and osteoarthritis (OA) severity. We hypothesized that T1ρ relaxation time would be associated with GAG content in human cartilage with normal T2 relaxation times. METHODS T2 relaxation time, T1ρ relaxation time, and glycosaminoglycan as a percentage of wet weight (sGAG) were measured for top and bottom regions at 7 anatomical locations in 21 human cadaver patellae. For our analysis, T2 relaxation time was classified as normal or elevated based on a threshold defined by the mean plus one standard deviation of the T2 relaxation time for all samples. RESULTS In the normal T2 relaxation time subset, T1ρ relaxation time correlated with sGAG content in the full-thickness and bottom regions, but only marginally in the top region alone. sGAG content decreased significantly with age in all regions. CONCLUSION In the subset of cartilage specimens with normal T2 relaxation time, T1ρ relaxation time was inversely associated with sGAG content, as hypothesized. A predictive model, which accounts for T2 relaxation time and the effects of age, might be able to determine longitudinal trends in GAG content in the same person based on T1ρ relaxation time maps.


Journal of Biomechanics | 2013

Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

Pauline Gerus; Massimo Sartori; Thor F. Besier; Benjamin J. Fregly; Scott L. Delp; Scott A. Banks; Marcus G. Pandy; Darryl D. D'Lima; David G. Lloyd

Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.


Journal of Biomechanics | 2013

Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis

Pete B. Shull; Rebecca Shultz; Amy Silder; Jason L. Dragoo; Thor F. Besier; Mark R. Cutkosky; Scott L. Delp

The first peak of the knee adduction moment has been linked to the presence, severity, and progression of medial compartment knee osteoarthritis. The objective of this study was to evaluate toe-in gait (decreased foot progression angle from baseline through internal foot rotation) as a means to reduce the first peak of the knee adduction moment in subjects with medial compartment knee osteoarthritis. Additionally, we examined whether the first peak in the knee adduction moment would cause a concomitant increase in the peak external knee flexion moment, which can eliminate reductions in the medial compartment force that result from lowering the knee adduction moment. We tested the following hypotheses: (a) toe-in gait reduces the first peak of the knee adduction moment, and (b) toe-in gait does not increase the peak external knee flexion moment. Twelve patients with medial compartment knee osteoarthritis first performed baseline walking trials and then toe-in gait trials at their self-selected speed on an instrumented treadmill in a motion capture laboratory. Subjects altered their foot progression angle from baseline to toe-in gait by an average of 5° (p<0.01), which reduced the first peak of the knee adduction moment by an average of 13% (p<0.01). Toe-in gait did not increase the peak external knee flexion moment (p=0.85). The reduced knee adduction moment was accompanied by a medially-shifted knee joint center and a laterally-shifted center of pressure during early stance. These results suggest that toe-in gait may be a promising non-surgical treatment for patients with medial compartment knee osteoarthritis.

Collaboration


Dive into the Thor F. Besier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary S. Beaupre

VA Palo Alto Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Zhang

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy R. Ackland

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge