Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elzbieta Brzuszkiewicz is active.

Publication


Featured researches published by Elzbieta Brzuszkiewicz.


Archives of Microbiology | 2011

GENOME SEQUENCE ANALYSES OF TWO ISOLATES FROM THE RECENT ESCHERICHIA COLI OUTBREAK IN GERMANY REVEAL THE EMERGENCE OF A NEW PATHOTYPE: ENTERO-AGGREGATIVE-HAEMORRHAGIC ESCHERICHIA COLI (EAHEC)

Elzbieta Brzuszkiewicz; Andrea Thürmer; Jörg Schuldes; Andreas Leimbach; Heiko Liesegang; Frauke-Dorothee Meyer; Jürgen Boelter; Heiko Petersen; Gerhard Gottschalk; Rolf Daniel

The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic Escherichiacoli (EAHEC).


Molecular Microbiology | 2006

Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536.

Bianca Hochhut; Caroline Wilde; Gudrun Balling; Barbara Middendorf; Ulrich Dobrindt; Elzbieta Brzuszkiewicz; Gerhard Gottschalk; Elisabeth Carniel; Jörg Hacker

The genome of uropathogenic Escherichia coli isolate 536 contains five well‐characterized pathogenicity islands (PAIs) encoding key virulence factors of this strain. Except PAI IV536, the four other PAIs of strain 536 are flanked by direct repeats (DRs), carry intact integrase genes and are able to excise site‐specifically from the chromosome. Genome screening of strain 536 identified a sixth putative asnW‐associated PAI. Despite the presence of DRs and an intact integrase gene, excision of this island was not detected. To investigate the role of PAI‐encoded integrases for the recombination process the int genes of each unstable island of strain 536 were inactivated. For PAI I536 and PAI II536, their respective P4‐like integrase was required for their excision. PAI III536 carries two integrase genes, intA, encoding an SfX‐like integrase, and intB, coding for an integrase with weak similarity to P4‐like integrases. Only intB was required for site‐specific excision of this island. For PAI V536, excision could not be abolished after deleting its P4‐like integrase gene but additional deletion of the PAI II536‐specific integrase gene was required. Therefore, although all mediated by P4‐like integrases, the activity of the PAI excision machinery is most often restricted to its cognate island. This work also demonstrates for the first time the existence of a cross‐talk between integrases of different PAIs and shows that this cross‐talk is unidirectional.


PLOS ONE | 2010

The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids

Silke R. Klee; Elzbieta Brzuszkiewicz; Herbert Nattermann; Holger Brüggemann; Susann Dupke; Antje Wollherr; Tatjana Franz; Georg Pauli; Bernd Appel; Wolfgang Liebl; Emmanuel Couacy-Hymann; Christophe Boesch; Frauke-Dorothee Meyer; Fabian H. Leendertz; Heinz Ellerbrok; Gerhard Gottschalk; Roland Grunow; Heiko Liesegang

Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as “B. cereus variety (var.) anthracis”.


PLOS Pathogens | 2010

Host Imprints on Bacterial Genomes-Rapid, Divergent Evolution in Individual Patients

Jaroslaw Zdziarski; Elzbieta Brzuszkiewicz; Björn Wullt; Heiko Liesegang; Dvora Biran; Birgit Voigt; Jenny Grönberg-Hernandez; Bryndís Ragnarsdóttir; Michael Hecker; Eliora Z. Ron; Rolf Daniel; Gerhard Gottschalk; Jörg Hacker; Catharina Svanborg; Ulrich Dobrindt

Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strains evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.


PLOS ONE | 2011

Comparative genomics and transcriptomics of Propionibacterium acnes.

Elzbieta Brzuszkiewicz; January Weiner; Antje Wollherr; Andrea Thürmer; Jennifer Hüpeden; Hans Lomholt; Mogens Kilian; Gerhard Gottschalk; Rolf Daniel; Hans-Joachim Mollenkopf; Thomas F. Meyer; Holger Brüggemann

The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of different P. acnes strains is not only determined by the phylotype-specific genome content but also by variable gene expression.


Journal of Antimicrobial Chemotherapy | 2012

ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes

Geovana Brenner Michael; Kristina Kadlec; Michael T. Sweeney; Elzbieta Brzuszkiewicz; Heiko Liesegang; Rolf Daniel; Robert W. Murray; Jeffrey L. Watts; Stefan Schwarz

BACKGROUND In recent years, multiresistant Pasteurella multocida isolates from bovine respiratory tract infections have been identified. These isolates have exhibited resistance to most classes of antimicrobial agents commonly used in veterinary medicine, the genetic basis of which, however, is largely unknown. METHODS Genomic DNA of a representative P. multocida isolate was subjected to whole genome sequencing. Genes have been predicted by the YACOP program, compared with the SWISSProt/EMBL databases and manually curated using the annotation software ERGO. Susceptibility testing was performed by broth microdilution according to CLSI recommendations. RESULTS The analysis of one representative P. multocida isolate identified an 82 kb integrative and conjugative element (ICE) integrated into the chromosomal DNA. This ICE, designated ICEPmu1, harboured 11 resistance genes, which confer resistance to streptomycin/spectinomycin (aadA25), streptomycin (strA and strB), gentamicin (aadB), kanamycin/neomycin (aphA1), tetracycline [tetR-tet(H)], chloramphenicol/florfenicol (floR), sulphonamides (sul2), tilmicosin/clindamycin [erm(42)] or tilmicosin/tulathromycin [msr(E)-mph(E)]. In addition, a complete bla(OXA-2) gene was detected, which, however, appeared to be functionally inactive in P. multocida. These resistance genes were organized in two regions of approximately 15.7 and 9.8 kb. Based on the sequences obtained, it is likely that plasmids, gene cassettes and insertion sequences have played a role in the development of the two resistance gene regions within this ICE. CONCLUSIONS The observation that 12 resistance genes, organized in two resistance gene regions, represent part of an ICE in P. multocida underlines the risk of simultaneous acquisition of multiple resistance genes via a single horizontal gene transfer event.


PLOS ONE | 2011

A Novel Metagenomic Short-Chain Dehydrogenase/ Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

Patrick Bijtenhoorn; Hubert Mayerhofer; Jochen Müller-Dieckmann; Christian Utpatel; Christina Schipper; Claudia Hornung; Matthias Szesny; Stephanie Grond; Andrea Thürmer; Elzbieta Brzuszkiewicz; Rolf Daniel; Katja Dierking; Hinrich Schulenburg; Wolfgang R. Streit

In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies.


Journal of Antimicrobial Chemotherapy | 2012

ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer

Geovana Brenner Michael; Kristina Kadlec; Michael T. Sweeney; Elzbieta Brzuszkiewicz; Heiko Liesegang; Rolf Daniel; Robert W. Murray; Jeffrey L. Watts; Stefan Schwarz

BACKGROUND Integrative and conjugative elements (ICEs) have not been detected in Pasteurella multocida. In this study the multiresistance ICEPmu1 from bovine P. multocida was analysed for its core genes and its ability to conjugatively transfer into strains of the same and different genera. METHODS ICEPmu1 was identified during whole genome sequencing. Coding sequences were predicted by bioinformatic tools and manually curated using the annotation software ERGO. Conjugation into P. multocida, Mannheimia haemolytica and Escherichia coli recipients was performed by mating assays. The presence of ICEPmu1 and its circular intermediate in the recipient strains was confirmed by PCR and sequence analysis. Integration sites were sequenced. Susceptibility testing of the ICEPmu1-carrying recipients was conducted by broth microdilution. RESULTS The 82 214 bp ICEPmu1 harbours 88 genes. The core genes of ICEPmu1, which are involved in excision/integration and conjugative transfer, resemble those found in a 66 641 bp ICE from Histophilus somni. ICEPmu1 integrates into a tRNA(Leu) and is flanked by 13 bp direct repeats. It is able to conjugatively transfer to P. multocida, M. haemolytica and E. coli, where it also uses a tRNA(Leu) for integration and produces closely related 13 bp direct repeats. PCR assays and susceptibility testing confirmed the presence and the functional activity of the ICEPmu1-associated resistance genes in the recipient strains. CONCLUSIONS The observation that the multiresistance ICEPmu1 is present in a bovine P. multocida and can easily spread across strain and genus boundaries underlines the risk of a rapid dissemination of multiple resistance genes, which will distinctly decrease the therapeutic options.


PLOS ONE | 2014

How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae.

Marvin Djukic; Elzbieta Brzuszkiewicz; Anne Fünfhaus; Jörn Voss; Kathleen Gollnow; Lena Poppinga; Heiko Liesegang; Eva Garcia-Gonzalez; Elke Genersch; Rolf Daniel

Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.


BMC Genomics | 2011

Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01

Kamini Gounder; Elzbieta Brzuszkiewicz; Heiko Liesegang; Antje Wollherr; Rolf Daniel; Gerhard Gottschalk; Oleg N. Reva; Benjamin Kumwenda; Malay Srivastava; Carlos Bricio; José Berenguer; Esta van Heerden; Derek Litthauer

BackgroundMany strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus.ResultsThe genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle.ConclusionsThe genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.

Collaboration


Dive into the Elzbieta Brzuszkiewicz's collaboration.

Top Co-Authors

Avatar

Rolf Daniel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Poehlein

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Kristina Kadlec

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Schwarz

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge