Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Thürmer is active.

Publication


Featured researches published by Andrea Thürmer.


PLOS ONE | 2011

Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.

Heiko Nacke; Andrea Thürmer; Antje Wollherr; Christiane Will; Ladislav Hodač; Nadine Herold; Ingo Schöning; Marion Schrumpf; Rolf Daniel

Background Soil bacteria are important drivers for nearly all biogeochemical cycles in terrestrial ecosystems and participate in most nutrient transformations in soil. In contrast to the importance of soil bacteria for ecosystem functioning, we understand little how different management types affect the soil bacterial community composition. Methodology/Principal Findings We used pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to identify changes in bacterial diversity and community structure in nine forest and nine grassland soils from the Schwäbische Alb that covered six different management types. The dataset comprised 598,962 sequences that were affiliated to the domain Bacteria. The number of classified sequences per sample ranged from 23,515 to 39,259. Bacterial diversity was more phylum rich in grassland soils than in forest soils. The dominant taxonomic groups across all samples (>1% of all sequences) were Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Firmicutes. Significant variations in relative abundances of bacterial phyla and proteobacterial classes, including Actinobacteria, Firmicutes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes and Alphaproteobacteria, between the land use types forest and grassland were observed. At the genus level, significant differences were also recorded for the dominant genera Phenylobacter, Bacillus, Kribbella, Streptomyces, Agromyces, and Defluviicoccus. In addition, soil bacterial community structure showed significant differences between beech and spruce forest soils. The relative abundances of bacterial groups at different taxonomic levels correlated with soil pH, but little or no relationships to management type and other soil properties were found. Conclusions/Significance Soil bacterial community composition and diversity of the six analyzed management types showed significant differences between the land use types grassland and forest. Furthermore, bacterial community structure was largely driven by tree species and soil pH.


Archives of Microbiology | 2011

GENOME SEQUENCE ANALYSES OF TWO ISOLATES FROM THE RECENT ESCHERICHIA COLI OUTBREAK IN GERMANY REVEAL THE EMERGENCE OF A NEW PATHOTYPE: ENTERO-AGGREGATIVE-HAEMORRHAGIC ESCHERICHIA COLI (EAHEC)

Elzbieta Brzuszkiewicz; Andrea Thürmer; Jörg Schuldes; Andreas Leimbach; Heiko Liesegang; Frauke-Dorothee Meyer; Jürgen Boelter; Heiko Petersen; Gerhard Gottschalk; Rolf Daniel

The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic Escherichiacoli (EAHEC).


Applied and Environmental Microbiology | 2010

Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

Christiane Will; Andrea Thürmer; Antje Wollherr; Heiko Nacke; Nadine Herold; Marion Schrumpf; Jessica L. M. Gutknecht; Tesfaye Wubet; François Buscot; Rolf Daniel

ABSTRACT The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass.


PLOS ONE | 2012

An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis.

Anja Poehlein; Silke Schmidt; Anne-Kristin Kaster; Meike Goenrich; John Vollmers; Andrea Thürmer; Johannes Bertsch; Kai Schuchmann; Birgit Voigt; Michael Hecker; Rolf Daniel; Rudolf K. Thauer; Gerhard Gottschalk; Volker Müller

Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes.


PLOS ONE | 2011

Comparative genomics and transcriptomics of Propionibacterium acnes.

Elzbieta Brzuszkiewicz; January Weiner; Antje Wollherr; Andrea Thürmer; Jennifer Hüpeden; Hans Lomholt; Mogens Kilian; Gerhard Gottschalk; Rolf Daniel; Hans-Joachim Mollenkopf; Thomas F. Meyer; Holger Brüggemann

The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of different P. acnes strains is not only determined by the phylotype-specific genome content but also by variable gene expression.


PLOS ONE | 2011

A Novel Metagenomic Short-Chain Dehydrogenase/ Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

Patrick Bijtenhoorn; Hubert Mayerhofer; Jochen Müller-Dieckmann; Christian Utpatel; Christina Schipper; Claudia Hornung; Matthias Szesny; Stephanie Grond; Andrea Thürmer; Elzbieta Brzuszkiewicz; Rolf Daniel; Katja Dierking; Hinrich Schulenburg; Wolfgang R. Streit

In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies.


Ecology and Evolution | 2012

Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities

Lara Danielsen; Andrea Thürmer; Peter Meinicke; M. Buée; E. Morin; F. Martin; G. Pilate; Rolf Daniel; Andrea Polle; M. Reich

Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.


Applied and Environmental Microbiology | 2012

Involvement of Two Latex-Clearing Proteins during Rubber Degradation and Insights into the Subsequent Degradation Pathway Revealed by the Genome Sequence of Gordonia polyisoprenivorans Strain VH2

Sebastian Hiessl; Jörg Schuldes; Andrea Thürmer; Tobias Halbsguth; Daniel Bröker; Angel Angelov; Wolfgang Liebl; Rolf Daniel; Alexander Steinbüchel

ABSTRACT The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.


The ISME Journal | 2012

Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics

Antje Gardebrecht; Stephanie Markert; Stefan M. Sievert; Horst Felbeck; Andrea Thürmer; Dirk Albrecht; Antje Wollherr; Johannes Kabisch; Nadine Le Bris; Rüdiger Lehmann; Rolf Daniel; Heiko Liesegang; Michael Hecker; Thomas Schweder

The two closely related deep-sea tubeworms Riftia pachyptila and Tevnia jerichonana both rely exclusively on a single species of sulfide-oxidizing endosymbiotic bacteria for their nutrition. They do, however, thrive in markedly different geochemical conditions. A detailed proteogenomic comparison of the endosymbionts coupled with an in situ characterization of the geochemical environment was performed to investigate their roles and expression profiles in the two respective hosts. The metagenomes indicated that the endosymbionts are genotypically highly homogeneous. Gene sequences coding for enzymes of selected key metabolic functions were found to be 99.9% identical. On the proteomic level, the symbionts showed very consistent metabolic profiles, despite distinctly different geochemical conditions at the plume level of the respective hosts. Only a few minor variations were observed in the expression of symbiont enzymes involved in sulfur metabolism, carbon fixation and in the response to oxidative stress. Although these changes correspond to the prevailing environmental situation experienced by each host, our data strongly suggest that the two tubeworm species are able to effectively attenuate differences in habitat conditions, and thus to provide their symbionts with similar micro-environments.


Science Signaling | 2017

Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis

Jan Gundlach; Christina Herzberg; Katrin Gunka; Tamara Hoffmann; Martin Weiß; Johannes Gibhardt; Andrea Thürmer; Dietrich Hertel; Rolf Daniel; Erhard Bremer; Fabian M. Commichau; Jörg Stülke

The second messenger cyclic di-AMP enables bacteria to adapt to changes in environmental potassium concentrations. c-di-AMP controls potassium homeostasis in bacteria In Bacillus subtilis, the second messenger cyclic di-AMP (c-di-AMP) regulates the expression of many genes encoding potassium transporters by binding to a regulatory RNA structure called a riboswitch in a gene called ydaO, preventing transcription beyond the riboswitch. Gundlach et al. found that ydaO encoded a high-affinity potassium transporter and renamed it kimA (K+ importer A). Binding of c-di-AMP to the kimA riboswitch under high external concentrations of potassium and the resulting inhibition of kimA expression were essential to ensure bacterial viability under these conditions. KimA is a member of an evolutionarily conserved family of potassium transporters, suggesting that this regulatory mechanism for potassium homeostasis could be widespread among diverse bacterial taxa. The second messenger cyclic di–adenosine monophosphate (c-di-AMP) is essential in the Gram-positive model organism Bacillus subtilis and in related pathogenic bacteria. It controls the activity of the conserved ydaO riboswitch and of several proteins involved in potassium (K+) uptake. We found that the YdaO protein was conserved among several different bacteria and provide evidence that YdaO functions as a K+ transporter. Thus, we renamed the gene and protein KimA (K+ importer A). Reporter activity assays indicated that expression beyond the c-di-AMP–responsive riboswitch of the kimA upstream regulatory region occurred only in bacteria grown in medium containing low K+ concentrations. Furthermore, mass spectrometry analysis indicated that c-di-AMP accumulated in bacteria grown in the presence of high K+ concentrations but not in low concentrations. A bacterial strain lacking all genes encoding c-di-AMP–synthesizing enzymes was viable when grown in medium containing low K+ concentrations, but not at higher K+ concentrations unless it acquired suppressor mutations in the gene encoding the cation exporter NhaK. Thus, our results indicated that the control of potassium homeostasis is an essential function of c-di-AMP.

Collaboration


Dive into the Andrea Thürmer's collaboration.

Top Co-Authors

Avatar

Rolf Daniel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jörg Schuldes

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Stülke

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Anja Poehlein

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Antje Wollherr

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge