Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elzbieta Kierzek is active.

Publication


Featured researches published by Elzbieta Kierzek.


Nucleic Acids Research | 2005

The influence of locked nucleic acid residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes

Elzbieta Kierzek; Anna Ciesielska; Karol Pasternak; David H. Mathews; Douglas H. Turner; Ryszard Kierzek

The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.


Journal of Biological Chemistry | 2010

Structural diversity of triplet repeat RNAs.

Krzysztof Sobczak; Gracjan Michlewski; Mateusz de Mezer; Elzbieta Kierzek; Jacek Krol; Marta Olejniczak; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak

Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.


Nucleic Acids Research | 2014

The contribution of pseudouridine to stabilities and structure of RNAs

Elzbieta Kierzek; Magdalena Malgowska; Jolanta Lisowiec; Douglas H. Turner; Zofia Gdaniec; Ryszard Kierzek

Thermodynamic data are reported revealing that pseudouridine (Ψ) can stabilize RNA duplexes when replacing U and forming Ψ-A, Ψ-G, Ψ-U and Ψ-C pairs. Stabilization is dependent on type of base pair, position of Ψ within the RNA duplex, and type and orientation of adjacent Watson–Crick pairs. NMR spectra demonstrate that for internal Ψ-A, Ψ-G and Ψ-U pairs, the N3 imino proton is hydrogen bonded to the opposite strand nucleotide and the N1 imino proton may also be hydrogen bonded. CD spectra show that general A-helix structure is preserved, but there is some shifting of peaks and changing of intensities. Ψ has two hydrogen donors (N1 and N3 imino protons) and two hydrogen bond acceptors because the glycosidic bond is C-C rather than C-N as in uridine. This greater structural potential may allow Ψ to behave as a kind of structurally driven universal base because it can enhance stability relative to U when paired with A, G, U or C inside a double helix. These structural and thermodynamic properties may contribute to the biological functions of Ψ.


Nucleic Acids Research | 2015

Microarrays for identifying binding sites and probing structure of RNAs

Ryszard Kierzek; Douglas H. Turner; Elzbieta Kierzek

Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure–function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.


PLOS ONE | 2012

The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin.

Walter N. Moss; Lumbini I. Dela-Moss; Elzbieta Kierzek; Ryszard Kierzek; Salvatore F. Priore; Douglas H. Turner

The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.


Nucleic Acids Research | 2008

Isoenergetic penta- and hexanucleotide microarray probing and chemical mapping provide a secondary structure model for an RNA element orchestrating R2 retrotransposon protein function

Elzbieta Kierzek; Ryszard Kierzek; Walter N. Moss; Shawn M. Christensen; Thomas H. Eickbush; Douglas H. Turner

LNA (locked nucleic acids, i.e. oligonucleotides with a methyl bridge between the 2′ oxygen and 4′ carbon of ribose) and 2,6-diaminopurine were incorporated into 2′-O-methyl RNA pentamer and hexamer probes to make a microarray that binds unpaired RNA approximately isoenergetically. That is, binding is roughly independent of target sequence if target is unfolded. The isoenergetic binding and short probe length simplify interpretation of binding to a structured RNA to provide insight into target RNA secondary structure. Microarray binding and chemical mapping were used to probe the secondary structure of a 323 nt segment of the 5′ coding region of the R2 retrotransposon from Bombyx mori (R2Bm 5′ RNA). This R2Bm 5′ RNA orchestrates functioning of the R2 protein responsible for cleaving the second strand of DNA during insertion of the R2 sequence into the genome. The experimental results were used as constraints in a free energy minimization algorithm to provide an initial model for the secondary structure of the R2Bm 5′ RNA.


Nucleic Acids Research | 2007

A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes

Anna Pasternak; Elzbieta Kierzek; Karol Pasternak; Douglas H. Turner; Ryszard Kierzek

Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.


Nucleic Acids Research | 2013

Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides

Yuan Zhou; Elzbieta Kierzek; Zi Ping Loo; Meraldo Antonio; Yin Hoe Yau; York Wieo Chuah; Susana Geifman-Shochat; Ryszard Kierzek; Gang Chen

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2′-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine–purine–pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2′-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA.


Nucleic Acids Research | 2006

Nearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides

Elzbieta Kierzek; David H. Mathews; Anna Ciesielska; Douglas H. Turner; Ryszard Kierzek

Results from optical melting studies of Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides are used to determine nearest neighbor thermodynamic parameters for predicting the stabilities of such duplexes. The results are consistent with the physical model assumed by the individual nearest neighbor-hydrogen bonding model, which contains terms for helix initiation, base pair stacking and base pair composition. The sequence dependence is similar to that for Watson–Crick complementary RNA/RNA duplexes, which suggests that the sequence dependence may also be similar to that for other backbones that favor A-form RNA conformations.


Biochemistry | 2014

Secondary structure of a conserved domain in an intron of influenza A M1 mRNA.

Tian Jiang; Scott D. Kennedy; Walter N. Moss; Elzbieta Kierzek; Douglas H. Turner

Influenza A virus utilizes RNA throughout infection. Little is known, however, about the roles of RNA structures. A previous bioinformatics survey predicted multiple regions of influenza A virus that are likely to generate evolutionarily conserved and stable RNA structures. One predicted conserved structure is in the pre-mRNA coding for essential proteins, M1 and M2. This structure starts 79 nucleotides downstream of the M2 mRNA 5′ splice site. Here, a combination of biochemical structural mapping, mutagenesis, and NMR confirms the predicted three-way multibranch structure of this RNA. Imino proton NMR spectra reveal no change in secondary structure when 80 mM KCl is supplemented with 4 mM MgCl2. Optical melting curves in 1 M NaCl and in 100 mM KCl with 10 mM MgCl2 are very similar, with melting temperatures ∼14 °C higher than that for 100 mM KCl alone. These results provide a firm basis for designing experiments and potential therapeutics to test for function in cell culture.

Collaboration


Dive into the Elzbieta Kierzek's collaboration.

Top Co-Authors

Avatar

Ryszard Kierzek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Biala

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Karol Pasternak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zofia Gdaniec

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

David J. Proctor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Philip C. Bevilacqua

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anna Pasternak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge