Ryszard Kierzek
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryszard Kierzek.
Nucleic Acids Research | 2005
Elzbieta Kierzek; Anna Ciesielska; Karol Pasternak; David H. Mathews; Douglas H. Turner; Ryszard Kierzek
The influence of locked nucleic acid (LNA) residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes is reported. Optical melting studies indicate that LNA incorporated into an otherwise 2′-O-methyl RNA oligonucleotide usually, but not always, enhances the stabilities of complementary duplexes formed with RNA. Several trends are apparent, including: (i) a 3′ terminal U LNA and 5′ terminal LNAs are less stabilizing than interior and other 3′ terminal LNAs; (ii) most of the stability enhancement is achieved when LNA nucleotides are separated by at least one 2′-O-methyl nucleotide; and (iii) the effects of LNA substitutions are approximately additive when the LNA nucleotides are separated by at least one 2′-O-methyl nucleotide. An equation is proposed to approximate the stabilities of complementary duplexes formed with RNA when at least one 2′-O-methyl nucleotide separates LNA nucleotides. The sequence dependence of 2′-O-methyl RNA/RNA duplexes appears to be similar to that of RNA/RNA duplexes, and preliminary nearest-neighbor free energy increments at 37°C are presented for 2′-O-methyl RNA/RNA duplexes. Internal mismatches with LNA nucleotides significantly destabilize duplexes with RNA.
Journal of Biological Chemistry | 2010
Krzysztof Sobczak; Gracjan Michlewski; Mateusz de Mezer; Elzbieta Kierzek; Jacek Krol; Marta Olejniczak; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak
Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.
Nucleic Acids Research | 2010
Agnieszka Kiliszek; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak; Wojciech Rypniewski
CAG repeats occur predominantly in the coding regions of human genes, which suggests their functional importance. In some genes, these sequences can undergo pathogenic expansions leading to neurodegenerative polyglutamine (poly-Q) diseases. The mutant transcripts containing expanded CAG repeats possibly contribute to pathogenesis in addition to the well-known pathogenic effects of mutant proteins. We have analysed two crystal forms of RNA duplexes containing CAG repeats: (GGCAGCAGCC)2. One of the structures has been determined at atomic resolution (0.95 Å) and the other at 1.9 Å. The duplexes include non-canonical A–A pairs that fit remarkably well within a regular A-helix. All the adenosines are in the anti-conformation and the only interaction within each A–A pair is a single C2-H2···N1 hydrogen bond. Both adenosines in each A–A pair are shifted towards the major groove, although to different extents; the A which is the H-bond donor stands out more (the ‘thumbs-up’ conformation). The main effect on the helix conformation is a local unwinding. The CAG repeats and the previously examined CUG structures share a similar pattern of electrostatic charge distribution in the minor groove, which could explain their affinity for the pathogenesis-related MBNL1 protein.
Nucleic Acids Research | 2009
Agnieszka Kiliszek; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak; Wojciech Rypniewski
Tracks containing CUG repeats are abundant in human gene transcripts. Their biological role includes modulation of pre-mRNA splicing, mRNA transport and regulation of translation. Expanded forms of CUG runs are associated with pathogenesis of several neurodegenerative diseases, including myotonic dystrophy type 1. We have analysed two crystal structures of RNA duplexes containing the CUG repeats: G(CUG)2C and (CUG)6. The first of the structures, analysed at 1.23 Å resolution, is of an oligomer designed by us. The second model was obtained after ‘detwinning’ the 1.58 Å X-ray data previously deposited in the PDB. The RNA duplexes are in the A-form in which all the C–G pairs form Watson–Crick interactions while all the uridine pairs can be described as U•U cis wobble having only one hydrogen bond between the bases. The residue, which accepts the H-bond, is inclined towards the minor groove. This previously unreported base pairing can be described as ‘stretched U–U wobble’. The regular hydrogen-bonding pattern of interactions with the solvent, the electrostatic charge distribution and surface features indicate the ligand binding potential of the CUG tracks.
Nucleic Acids Research | 2014
Elzbieta Kierzek; Magdalena Malgowska; Jolanta Lisowiec; Douglas H. Turner; Zofia Gdaniec; Ryszard Kierzek
Thermodynamic data are reported revealing that pseudouridine (Ψ) can stabilize RNA duplexes when replacing U and forming Ψ-A, Ψ-G, Ψ-U and Ψ-C pairs. Stabilization is dependent on type of base pair, position of Ψ within the RNA duplex, and type and orientation of adjacent Watson–Crick pairs. NMR spectra demonstrate that for internal Ψ-A, Ψ-G and Ψ-U pairs, the N3 imino proton is hydrogen bonded to the opposite strand nucleotide and the N1 imino proton may also be hydrogen bonded. CD spectra show that general A-helix structure is preserved, but there is some shifting of peaks and changing of intensities. Ψ has two hydrogen donors (N1 and N3 imino protons) and two hydrogen bond acceptors because the glycosidic bond is C-C rather than C-N as in uridine. This greater structural potential may allow Ψ to behave as a kind of structurally driven universal base because it can enhance stability relative to U when paired with A, G, U or C inside a double helix. These structural and thermodynamic properties may contribute to the biological functions of Ψ.
Nucleic Acids Research | 2015
Ryszard Kierzek; Douglas H. Turner; Elzbieta Kierzek
Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure–function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.
Journal of Chemical Theory and Computation | 2012
Ilyas Yildirim; Scott D. Kennedy; Harry A. Stern; James M. Hart; Ryszard Kierzek; Douglas H. Turner
All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)2, r(GGCC)2, r(GCGC)2, and r(CGCG)2 are replaced by isocytidine–isoguanosine (iCiG) pairs. Agreement with experiment was improved when ε/ζ, α/γ, β, and χ torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations. The revised force field, AMBER99TOR, brings free energy difference predictions to within 1.3, 1.4, 2.3, and 2.6 kcal/mol at 300 K, respectively, compared to experimental results for the thermodynamic cycles of CCGG → iCiCiGiG, GGCC → iGiGiCiC, GCGC → iGiCiGiC, and CGCG → iCiGiCiG. In contrast, unmodified AMBER99 predictions for GGCC → iGiGiCiC and GCGC → iGiCiGiC differ from experiment by 11.7 and 12.6 kcal/mol, respectively. In order to test the dynamic stability of the above duplexes with AMBER99TOR, four individual 50 ns molecular dynamics (MD) simulations in explicit solvent were run. All except r(CCGG)2 retained A-form conformation for ≥82% of the time. This is consistent with NMR spectra of r(iGiGiCiC)2, which reveal an A-form conformation. In MD simulations, r(CCGG)2 retained A-form conformation 52% of the time, suggesting that its terminal base pairs may fray. The results indicate that revised backbone parameters improve predictions of RNA properties and that comparisons to measured sequence dependent thermodynamics provide useful benchmarks for testing force fields and computational methods.
Nucleic Acids Research | 2011
Agnieszka Kiliszek; Ryszard Kierzek; Wlodzimierz J. Krzyzosiak; Wojciech Rypniewski
The CGG repeats are present in the 5′-untranslated region (5′-UTR) of the fragile X mental retardation gene FMR1 and are associated with two diseases: fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X syndrome (FXS). FXTAS occurs when the number of repeats is 55–200 and FXS develops when the number exceeds 200. FXTAS is an RNA-mediated disease in which the expanded CGG tracts form stable structures and sequester important RNA binding proteins. We obtained and analysed three crystal structures of double-helical CGG repeats involving unmodified and 8-Br modified guanosine residues. Despite the presence of the non-canonical base pairs, the helices retain an A-form. In the G–G pairs one guanosine is always in the syn conformation, the other is anti. There are two hydrogen bonds between the Watson–Crick edge of G(anti) and the Hoogsteen edge of G(syn): O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows affinity for binding ions in the major groove. G(syn) causes local unwinding of the helix, compensated elsewhere along the duplex. CGG helical structures appear relatively stable compared with CAG and CUG tracts. This could be an important factor in the RNA’s ligand binding affinity and specificity.
PLOS ONE | 2012
Walter N. Moss; Lumbini I. Dela-Moss; Elzbieta Kierzek; Ryszard Kierzek; Salvatore F. Priore; Douglas H. Turner
The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
Nucleic Acids Research | 2008
Elzbieta Kierzek; Ryszard Kierzek; Walter N. Moss; Shawn M. Christensen; Thomas H. Eickbush; Douglas H. Turner
LNA (locked nucleic acids, i.e. oligonucleotides with a methyl bridge between the 2′ oxygen and 4′ carbon of ribose) and 2,6-diaminopurine were incorporated into 2′-O-methyl RNA pentamer and hexamer probes to make a microarray that binds unpaired RNA approximately isoenergetically. That is, binding is roughly independent of target sequence if target is unfolded. The isoenergetic binding and short probe length simplify interpretation of binding to a structured RNA to provide insight into target RNA secondary structure. Microarray binding and chemical mapping were used to probe the secondary structure of a 323 nt segment of the 5′ coding region of the R2 retrotransposon from Bombyx mori (R2Bm 5′ RNA). This R2Bm 5′ RNA orchestrates functioning of the R2 protein responsible for cleaving the second strand of DNA during insertion of the R2 sequence into the genome. The experimental results were used as constraints in a free energy minimization algorithm to provide an initial model for the secondary structure of the R2Bm 5′ RNA.