Elżbieta Mikiciuk-Olasik
Medical University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elżbieta Mikiciuk-Olasik.
International Journal of Molecular Sciences | 2011
Paweł Szymański; Magdalena Markowicz; Elżbieta Mikiciuk-Olasik
High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound’s toxicity having only 1–3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study.
Biometals | 2012
Paweł Szymański; Tomasz Frączek; Magdalena Markowicz; Elżbieta Mikiciuk-Olasik
Copper is one of the most interesting elements for various biomedical applications. Copper compounds show vast array of biological actions, including anti-inflammatory, anti-proliferative, biocidal and other. It also offers a selection of radioisotopes, suitable for nuclear imaging and radiotherapy. Quick progress in nanotechnology opened new possibilities for design of copper based drugs and medical materials. To date, copper has not found many uses in medicine, but number of ongoing research, as well as preclinical and clinical studies, will most likely lead to many novel applications of copper in the near future.
Bioorganic Chemistry | 2011
Paweł Szymański; Magdalena Markowicz; Elżbieta Mikiciuk-Olasik
Current state of medical sciences does not allow to treatment neurodegenerative diseases such as Alzheimers disease (AD). At present treatment of AD is severely restricted. The main class of medicines which are applied in AD is acetylcholinesterase inhibitors (AChEIs) like tacrine, donepezil, galantamine and rivastigmine that do not contribute to significant and long-term improvement in cognitive and behavioural functions. In this work, we report synthesis and biological evaluation of new hybrids of tacrine-6-hydrazinonicotinamide. The synthesis was based on the condensation reaction between tacrine derivatives and the hydrazine nicotinate moiety (HYNIC). All obtained compounds present affinity for both cholinesterases and are characterized by high selectivity in relation to butyrylcholinesterase (BChE).
Journal of Biological Physics | 2012
Magdalena Markowicz; Paweł Szymański; Marcin Ciszewski; Arkadiusz Kłys; Elżbieta Mikiciuk-Olasik
The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues. The nature of the dendrimer–drug complexes was investigated by 1H NMR and 2D-NOESY spectroscopy. The 1H NMR analysis proved that the water-soluble supramolecular structure of the complex was formed on the basis of ionic interactions between terminal amine groups of dendrimers and carboxyl groups of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid. The results of solubility studies together with 1H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1–4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.
International Journal of Pharmaceutics | 2014
Magdalena Markowicz-Piasecka; Emilia Łuczak; Maciej Chalubinski; Marlena Broncel; Elżbieta Mikiciuk-Olasik; Joanna Sikora
UNLABELLED The last decade has brought many examples of utilization of dendrimers as drug delivery systems; however, their possible application is limited because of inherent toxicity associated with them. This study discusses the influence of G1-G4 PAMAM-NH2 dendrimers on the process of hemostasis and integrity of endothelial monolayer. The global assay of coagulation and fibrinolysis was investigated spectrophotometrically by means of CL-test at 405 nm. Thrombin (0.5 I U/mL) and t-PA (240 ng/mL) were used to obtain clotting and lysis curve. The activity of thrombin was determined by means of chromogenic substrate S-2238. The influence of PAMAM dendrimers on the barrier properties of human primary aortal endothelium was assessed by means of method based on the measurements of the impedance changes of the cells. Observed multidirectional impact of dendrimers, without affecting the thrombin activity, on clot formation, its stabilization and fibrinolysis could be regarded as important when trying to use them clinically. It is crucial that examined PAMAM dendrimers did not lead to spontaneous aggregation of fibrinogen. Importantly, examined polymers have concentration- and generation-dependent adverse effect towards the endothelial monolayer. RESULT of described studies provide additional insight into PAMAM dendrimers toxicity associated with systemic administration and underscore the necessity for further research.
International Journal of Molecular Sciences | 2012
Paweł Szymański; Alice Laznickova; Milan Laznicek; Marek Bajda; Barbara Malawska; Magdalena Markowicz; Elżbieta Mikiciuk-Olasik
In the present study we describe the synthesis and biological assessment of new tacrine analogs in the course of inhibition of acetylcholinesterase. The obtained molecules were synthesized in a condensation reaction between activated 6-BOC-hydrazinopyridine-3-carboxylic acid and 8-aminoalkyl derivatives of 2,3-dihydro-1H-cyclopenta[b]quinoline. Activities of the newly synthesized compounds were estimated by means of Ellman’s method. Compound 6h (IC50 = 3.65 nM) was found to be most active. All obtained novel compounds present comparable activity to that of tacrine towards acetylcholinesterase (AChE) and, simultaneously, lower activity towards butyrylcholinesterase (BChE). Apart from 6a, all synthesized compounds are characterized by a higher affinity for AChE and a lower affinity for BChE in comparison with tacrine. Among all obtained molecules, compound 6h presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling showed that all compounds demonstrated a similar binding mode with AChE and interacted with catalytic and peripheral sites of AChE. Also, a biodistribution study of compound 6a radiolabeled with 99mTc was performed.
Bioorganic & Medicinal Chemistry | 2015
Marek Bajda; Jakub Jończyk; Barbara Malawska; Kamila Czarnecka; Małgorzata Girek; Paulina Olszewska; Joanna Sikora; Elżbieta Mikiciuk-Olasik; Robert Skibiński; Anna Gumieniczek; Paweł Szymański
A novel series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with 4-dimethylaminobenzoic acid moiety was synthesized and tested towards inhibition of cholinesterases and amyloid β aggregation. Target compounds were designed as dual binding site cholinesterase inhibitors able to bind to both the catalytic and the peripheral site of the enzyme and therefore potentially endowed with other properties. The obtained derivatives were very potent inhibitors of both cholinesterases (EeAChE, EqBChE) with IC50 values ranging from sub-nanomolar to nanomolar range, and the inhibitory potency of the most promising agents was higher than that of the reference drugs (rivastigmine and tacrine). The kinetic studies of the most active compound 3a revealed competitive type of AChE inhibition. Moreover, all target compounds were more potent inhibitors of human AChE than tacrine with the most active compound 3b (IC50 = 19 nM). Compound 3a was also tested and displayed inhibitory potency against AChE-induced Aβ 1-42 aggregation (80.6% and 91.3% at 50 μM and 100 μM screening concentration, respectively). Moreover, cytotoxicity assay performed on A549 cells did not indicate toxicity of this agent. Compound 3a is a promising candidate for further development of novel multi-functional agents in the therapy of AD.
Oxidative Medicine and Cellular Longevity | 2014
Joanna Sikora; Marlena Broncel; Elżbieta Mikiciuk-Olasik
Purpose. The aim of the study was to analyze the effects of two-month supplementation with chokeberry preparation on the activity of angiotensin I-converting enzyme (ACE) in patients with metabolic syndrome (MS). During the in vitro stage of the study, we determined the concentration of chokeberry extract, which inhibited the activity of ACE by 50% (IC50). Methods. The participants (n = 70) were divided into three groups: I—patients with MS who received chokeberry extract supplements, II—healthy controls, and III—patients with MS treated with ACE inhibitors. Results. After one and two months of the experiment, a decrease in ACE activity corresponded to 25% and 30%, respectively. We documented significant positive correlations between the ACE activity and the systolic (r = 0.459, P = 0.048) and diastolic blood pressure, (r = 0.603, P = 0.005) and CRP. The IC50 of chokeberry extract and captopril amounted to 155.4 ± 12.1 μg/mL and 0.52 ± 0.18 μg/mL, respectively. Conclusions. Our in vitro study revealed that chokeberry extract is a relatively weak ACE inhibitor. However, the results of clinical observations suggest that the favorable hypotensive action of chokeberry polyphenols may be an outcome of both ACE inhibition and other pleotropic effects, for example, antioxidative effect.
Pharmacological Reports | 2014
Katarzyna Błaszczak-Świątkiewicz; Paulina Olszewska; Elżbieta Mikiciuk-Olasik
BACKGROUND A series of new benzimidazole derivatives, earlier synthesized, was tested in vitro as new bioreductive prodrugs with the potential anticancer activity. Their effect on the DNA destruction and growth inhibition into selected tumor cell lines at normoxia and hypoxia conditions was determined. METHODS The human lung adenocarcinoma A549 cell line was used to determine the anticancer activity of the analyzed compounds by using WST-1 assay. The apoptosis test (caspase 3/7 assay) was used to define the cytotoxic way of tumor cells death. Additionally test In situ DNA Damage Assay Kit was applied to recognize the DNA destruction. RESULTS Four of the examined compounds (1, 3, 7, 9) show a very good antiproliferative effect and three of them are specific for hypoxia conditions (2, 4, 8). CONCLUSION Compound 8 is the most cytotoxic against human lung adenocarcinoma A549 cells at hypoxic conditions. Hypoxia/normoxia cytotoxic coefficient of compound 8 (4.75) is close to hypoxia/normoxia cytotoxic coefficient of tirapazamine (5.59) - reference substance in our experiments and this parameter locates it between mitomycin C and 2-nitroimidazole (misonidazole). The screening test of the caspase-dependent apoptosis proved that the exposure of compounds 1-2 and 7-8 against A549 cells for a 48 h promote apoptotic cell death. Additionally, the test of the DNA damage established that compounds 1, 2, 7, 8 are specific agents for the hypoxia-selective cytotoxicity of nitrobenzimidazoles [6,26].
Die Pharmazie | 2006
Paweł Szymański; E. Zurek; Elżbieta Mikiciuk-Olasik
The syntheses and the preliminary results of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by an affinity series of tacrine-hydrazinonicotinamide hybrids are described. These molecules were prepared by condensation of tacrine analogues with the hydrazine nicotinate moiety (HYNIC). Derivatives 6a and 6b showed lower activity than the model tacrine, while compounds 6c and 6d showed the strongest affinity to AChE. All the tested compounds exhibited lower affinity for BChE than tacrine. Alzheimer disease (AD) is characterised by a deficit of acetylcholinesterase, and these new compounds, as ligands for 99mTc complexes, are potential radiopharmaceuticals for an early diagnosis of Alzheimers disease.