Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuela Garelli is active.

Publication


Featured researches published by Emanuela Garelli.


Human Mutation | 2010

The ribosomal basis of diamond‐blackfan anemia: mutation and database update

Ilenia Boria; Emanuela Garelli; Hanna T. Gazda; Anna Aspesi; Paola Quarello; Elisa Pavesi; Daniela Ferrante; Joerg J. Meerpohl; Mutlu Kartal; Lydie Da Costa; Alexis Proust; Thierry Leblanc; Maud Simansour; Niklas Dahl; Anne-Sophie Fröjmark; Dagmar Pospisilova; Radek Cmejla; Alan H. Beggs; Mee Rie Sheen; Michael Landowski; Christopher Buros; Catherine Clinton; Lori J. Dobson; Adrianna Vlachos; Eva Atsidaftos; Jeffrey M. Lipton; Steven R. Ellis; Ugo Ramenghi; Irma Dianzani

Diamond‐Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype–phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database. Hum Mutat 31:1269–1279, 2010.


American Journal of Human Genetics | 1998

Identification of microdeletions spanning the Diamond-Blackfan anemia locus on 19q13 and evidence for genetic heterogeneity.

Peter Gustavsson; Emanuela Garelli; Natalia Draptchinskaia; Sarah E. Ball; Thiebaut-Noel Willig; Dimitri Tentler; Irma Dianzani; Hope H. Punnett; Frank E. Shafer; Holger Cario; Ugo Ramenghi; Anders Glomstein; R. A. Pfeiffer; Andy Goringe; Nancy F. Olivieri; Elizabeth Smibert; Gil Tchernia; Göran Elinder; Niklas Dahl

Summary Diamond-Blackfan anemia (DBA) is a rare pure red-cell hypoplasia of unknown etiology and pathogenesis. A major DBA locus has previously been localized to chromosome 19q13.2. Samples from additional families have been collected to identify key recombinations, microdeletions, and the possibility of heterogeneity for the disorder. In total, 29 multiplex DBA families and 50 families that comprise sporadic DBA cases have been analyzed with polymorphic 19q13 markers, including a newly identified short-tandem repeat in the critical gene region. The results from DNA analysis of 29 multiplex families revealed that 26 of these were consistent with a DBA gene on 19q localized to within a 4.1-cM interval restricted by loci D19S200 and D19S178; however, in three multiplex families, the DBA candidate region on 19q13 was excluded from the segregation of marker alleles. Our results suggest genetic heterogeneity for DBA, and we show that a gene region on chromosome 19q segregates with the disease in the majority of familial cases. Among the 50 families comprising sporadic DBA cases, we identified two novel and overlapping microdeletions on chromosome 19q13. In combination, the three known microdeletions associated with DBA restrict the critical gene region to ∼1 Mb. The results indicate that a proportion of sporadic DBA cases are caused by deletions in the 19q13 region.


Human Mutation | 2008

RPS19 mutations in patients with Diamond-Blackfan anemia†

Maria Francesca Campagnoli; Ugo Ramenghi; Marta Armiraglio; Paola Quarello; Emanuela Garelli; Adriana Carando; Federica Avondo; Elisa Pavesi; Sébastien Fribourg; Pierre-Emmanuel Gleizes; Fabrizio Loreni; Irma Dianzani

Diamond‐Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty‐five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long‐term prognosis compared to other DBA patients. Hum Mutat 29(7), 911–920, 2008.


Haematologica | 2010

Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations

Paola Quarello; Emanuela Garelli; Adriana Carando; Roberto Calabrese; Carlo Dufour; Daniela Longoni; Aldo Misuraca; Luciana Vinti; Anna Aspesi; Laura Biondini; Fabrizio Loreni; Irma Dianzani; Ugo Ramenghi

Background Diamond-Blackfan anemia is a rare, pure red blood cell aplasia of childhood due to an intrinsic defect in erythropoietic progenitors. About 40% of patients display various malformations. Anemia is corrected by steroid treatment in more than 50% of cases; non-responders need chronic transfusions or stem cell transplantation. Defects in the RPS19 gene, encoding the ribosomal protein S19, are the main known cause of Diamond-Blackfan anemia and account for more than 25% of cases. Mutations in RPS24, RPS17, and RPL35A described in a minority of patients show that Diamond-Blackfan anemia is a disorder of ribosome biogenesis. Two new genes (RPL5, RPL11), encoding for ribosomal proteins of the large subunit, have been reported to be involved in a considerable percentage of patients. Design and Methods In this genotype-phenotype analysis we screened the coding sequence and intron-exon boundaries of RPS14, RPS16, RPS24, RPL5, RPL11, and RPL35A in 92 Italian patients with Diamond-Blackfan anemia who were negative for RPS19 mutations. Results About 20% of the patients screened had mutations in RPL5 or RPL11, and only 1.6% in RPS24. All but three mutations that we report here are new mutations. No mutations were found in RPS14, RPS16, or RPL35A. Remarkably, we observed a higher percentage of somatic malformations in patients with RPL5 and RPL11 mutations. A close association was evident between RPL5 mutations and craniofacial malformations, and between hand malformations and RPL11 mutations. Conclusions Mutations in four ribosomal proteins account for around 50% of all cases of Diamond-Blackfan anemia in Italian patients. Genotype-phenotype data suggest that mutation screening should begin with RPL5 and RPL11 in patients with Diamond-Blackfan anemia with malformations.


Journal of Clinical Pathology | 2006

Familial tumoral calcinosis and testicular microlithiasis associated with a new mutation of GALNT3 in a white family.

Mf Campagnoli; A Pucci; Emanuela Garelli; Adriana Carando; C Defilippi; Roberto Lala; G Ingrosso; Irma Dianzani; M Forni; Ugo Ramenghi

Background: Familial tumoral calcinosis (FTC) is a rare autosomal recessive disease characterised by the development of multiple calcified masses in periarticular soft tissues; GALNT3 gene mutations have recently been described in an African American and in a Druse Arab family with FTC. Objective: To report the clinical and histological features caused by a new GALNT3 mutation in a white family. Results: Homozygosity for the nonsense mutation Lys463X was found in both affected siblings, who displayed a classic phenotype, the male also having testicular microlithiasis. He is the first subject described with testicular microlithiasis in FTC. Conclusions: The high testicular expression of GALNT3 suggests that the gene alteration could act locally by causing deposition of calcium, and the testis may be an underestimated site of calcification in FTC. Autoimmune diseases are present in several members of the family. Although immune disorders have been described in FTC, autoimmunity does not segregate with the GALNT3 mutation in this family.


JAMA Neurology | 2008

Progressive External Ophthalmoplegia and Vision and Hearing Loss in a Patient With Mutations in POLG2 and OPA1

Silvio Ferraris; Susanna Clark; Emanuela Garelli; Guido Davidzon; Steven A. Moore; Randy H. Kardon; Rachelle J. Bienstock; Matthew J. Longley; Michelangelo Mancuso; Purificacion Gutierrez Rios; Michio Hirano; William C. Copeland; Salvatore DiMauro

OBJECTIVE To describe the clinical features, muscle pathological characteristics, and molecular studies of a patient with a mutation in the gene encoding the accessory subunit (p55) of polymerase gamma (POLG2) and a mutation in the OPA1 gene. DESIGN Clinical examination and morphological, biochemical, and molecular analyses. SETTING Tertiary care university hospitals and molecular genetics and scientific computing laboratory. PATIENT A 42-year-old man experienced hearing loss, progressive external ophthalmoplegia (PEO), loss of central vision, macrocytic anemia, and hypogonadism. His family history was negative for neurological disease, and his serum lactate level was normal. RESULTS A muscle biopsy specimen showed scattered intensely succinate dehydrogenase-positive and cytochrome-c oxidase-negative fibers. Southern blot of muscle mitochondrial DNA showed multiple deletions. The results of screening for mutations in the nuclear genes associated with PEO and multiple mitochondrial DNA deletions, including those in POLG (polymerase gamma gene), ANT1 (gene encoding adenine nucleotide translocator 1), and PEO1, were negative, but sequencing of POLG2 revealed a G1247C mutation in exon 7, resulting in the substitution of a highly conserved glycine with an alanine at codon 416 (G416A). Because biochemical analysis of the mutant protein showed no alteration in chromatographic properties and normal ability to protect the catalytic subunit from N-ethylmaleimide, we also sequenced the OPA1 gene and identified a novel heterozygous mutation (Y582C). CONCLUSION Although we initially focused on the mutation in POLG2, the mutation in OPA1 is more likely to explain the late-onset PEO and multisystem disorder in this patient.


Pediatric Drugs | 2000

Diamond-Blackfan Anaemia

Irma Dianzani; Emanuela Garelli; Ugo Ramenghi

Diamond Blackfan Anaemia (DBA) is a congenital disease characterised by defective erythroid progenitor maturation. It is usually diagnosed during the first year of life. The main clinical sign is profound isolated normochromic or macrocytic anaemia, with normal numbers and function of the other haemopoietic cells. Reticulocyte counts in patients with DBA are very low. Bone marrow reflects the defective erythropoiesis, showing a very low number of erythropoietic precursors and a reduction of erythroid burst-forming unit progenitor cells. The proliferation and differentiation of the other lineages are normal. More than one-third of patients have malformations, most often involving the upper limbs and head, and the urogenital or cardiovascular systems. However, the link between these malformations and defective erythropoiesis is unclear and a defect in a molecule acting on both early embryonic development and haematopoiesis has been proposed. Whereas most cases are sporadic, inheritance is observed in 10% of patients, with a dominant or, more rarely, recessive pattern. One locus on chromosome 19q13.2 encoding ribosomal protein S19 accounts for a quarter of patients with either the dominant or the sporadic form. Families not linked with this locus have also been described. The diagnosis of DBA may be difficult and differential diagnoses include Fanconi’s anaemia and acquired erythroid aplasias. Erythrocyte adenosine deaminase levels are generally high in DBA patients, which may help in the diagnosis, but they are not pathognomic.Corticosteroids are the main treatment option in DBA and these agents induce erythropoiesis in over 60% of patients. Some patients achieve complete remission, which may be either corticosteroid-induced or spontaneous. The increased in vitro erythropoiesis occasionally induced by the addition of specific cytokines, namely interleukin (IL)-3 and stem cell factor (SCF), has suggested their use in vivo. However, few patients have responded to IL-3, whereas SCF administration, though interesting in theory, has not yet been attempted. Patients who do not respond to corticosteroids and those who have to discontinue treatment because of adverse events must rely on long term transfusions, and are thus exposed to all of the associated complications. Bone marrow or cord blood transplantation has been performed in some patients. The former approach is burdened with severe complications and high mortality.


Pediatric Blood & Cancer | 2014

Loss of GATA-1 Full Length as a Cause of Diamond–Blackfan Anemia Phenotype

Sara Parrella; Anna Aspesi; Paola Quarello; Emanuela Garelli; Elisa Pavesi; Adriana Carando; M. Nardi; Steven R. Ellis; Ugo Ramenghi; Irma Dianzani

Mutations in the hematopoietic transcription factor GATA‐1 alter the proliferation/differentiation of hemopoietic progenitors. Mutations in exon 2 interfere with the synthesis of the full‐length isoform of GATA‐1 and lead to the production of a shortened isoform, GATA‐1s. These mutations have been found in patients with Diamond–Blackfan anemia (DBA), a congenital erythroid aplasia typically caused by mutations in genes encoding ribosomal proteins. We sequenced GATA‐1 in 23 patients that were negative for mutations in the most frequently mutated DBA genes. One patient showed a c.2T > C mutation in the initiation codon leading to the loss of the full‐length GATA‐1 isoform. Pediatr Blood Cancer 2014;61:1319–1321.


Journal of Medical Genetics | 2003

Rapp-Hodgkin and AEC syndromes due to a new frameshift mutation in the TP63 gene

Irma Dianzani; Emanuela Garelli; Peter Gustavsson; Adriana Carando; B. Gustafsson; Niklas Dahl; Göran Annerén

Increases in the number of allelic malformation syndromes (due to mutations in a single gene) have led to their classification according to their pathogenesis rather than their clinical specific phenotype. TP63 mutations have been identified in several such syndromes characterised by autosomal dominant transmission and various combinations of ectodermal dysplasia, limb malformations, and orofacial clefting. The TP63 gene is a TP53 homologue,1–8 part of a family composed of only three members. The third member (TP73) is more similar to TP63 than to TP53 in both structure and function.9–13 Like p53, p63 has a transactivating (TA), a DNA binding (DB), and a polymerisation domain; it exerts p53-like activities in various contexts, such as binding canonical p53 sites, transactivating p53 target genes, and inducing apoptosis.1,2 Unlike TP53, which expresses one major transcript, TP63 contains four separate transcription initiation sites that direct expression of two fundamentally different isotypes that retain (TA products) or lack (ΔN products) the TA domain.14 Alternative splicing generates additional complexity at the C terminus. ΔN isoforms lack TA activity and may also suppress the TA isoforms, either by simple competition for the DNA target sites or by acting as dominant negatives through oligomerisation. By contrast to p53, the C terminus in p63 is longer and contains a SAM domain and a TID (transactivation inhibitory domain). SAM domains are involved in protein-protein interactions and probably have regulatory functions in p63,15–17 since its TA-α isoform shows a lower TA activity than the γ form, which lacks the SAM but retains the TA domain. The TID has been mapped within the α tail downstream to the SAM domain.14 The differences at the C terminus identify three transcripts which have different properties and functions: α, β, and γ isoforms. The α isoforms have …


Haematologica | 2012

High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay.

Paola Quarello; Emanuela Garelli; Adriana Carando; Cecilia Mancini; Patrizia Pappi; Luciana Vinti; Johanna Svahn; Irma Dianzani; Ugo Ramenghi

Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy.

Collaboration


Dive into the Emanuela Garelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irma Dianzani

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Quarello

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Aspesi

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge