Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irma Dianzani is active.

Publication


Featured researches published by Irma Dianzani.


Nature Genetics | 1999

The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia

Natalia Draptchinskaia; Peter Gustavsson; Björn Andersson; Monica Pettersson; Thiebaut-Noel Willig; Irma Dianzani; Sarah E. Ball; Gil Tchernia; Joakim Klar; Hans Matsson; Dimitri Tentler; Narla Mohandas; Birgit Carlsson; Niklas Dahl

Diamond–Blackfan anaemia (DBA) is a constitutional erythroblastopenia characterized by absent or decreased erythroid precursors. The disease, previously mapped to human chromosome 19q13, is frequently associated with a variety of malformations. To identify the gene involved in DBA, we cloned the chromosome 19q13 breakpoint in a patient with a reciprocal X;19 chromosome translocation. The breakpoint occurred in the gene encoding ribosomal protein S19. Furthermore, we identified mutations in RPS19 in 10 of 40 unrelated DBA patients, including nonsense, frameshift, splice site and missense mutations, as well as two intragenic deletions. These mutations are associated with clinical features that suggest a function for RPS19 in erythropoiesis and embryogenesis.


American Journal of Human Genetics | 1998

A European multicenter study of phenylalanine hydroxylase deficiency: Classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype

Per Guldberg; Francoise Rey; Johannes Zschocke; Valentino Romano; Baudouin François; Luc Michiels; Kurt Ullrich; Georg F. Hoffmann; Peter Burgard; H. Schmidt; Concetta Meli; Enrica Riva; Irma Dianzani; Alberto Ponzone; Jean Rey; Flemming Güttler

Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). Previous studies have suggested that the highly variable metabolic phenotypes of PAH deficiency correlate with PAH genotypes. We identified both causative mutations in 686 patients from seven European centers. On the basis of the phenotypic characteristics of 297 functionally hemizygous patients, 105 of the mutations were assigned to one of four arbitrary phenotype categories. We proposed and tested a simple model for correlation between genotype and phenotypic outcome. The observed phenotype matched the predicted phenotype in 79% of the cases, and in only 5 of 184 patients was the observed phenotype more than one category away from that expected. Among the seven contributing centers, the proportion of patients for whom the observed phenotype did not match the predicted phenotype was 4%-23% (P<.0001), suggesting that differences in methods used for mutation detection or phenotype classification may account for a considerable proportion of genotype-phenotype inconsistencies. Our data indicate that the PAH-mutation genotype is the main determinant of metabolic phenotype in most patients with PAH deficiency. In the present study, the classification of 105 PAH mutations may allow the prediction of the biochemical phenotype in >10,000 genotypes, which may be useful for the management of hyperphenylalaninemia in newborns.


Journal of extracellular vesicles | 2013

Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes

Rossella Crescitelli; Cecilia Lässer; Tamás Szabó; Ágnes Kittel; Maria Eldh; Irma Dianzani; Edit I. Buzás; Jan Lötvall

Introduction In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer®. Results RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis.


Human Mutation | 2010

The ribosomal basis of diamond‐blackfan anemia: mutation and database update

Ilenia Boria; Emanuela Garelli; Hanna T. Gazda; Anna Aspesi; Paola Quarello; Elisa Pavesi; Daniela Ferrante; Joerg J. Meerpohl; Mutlu Kartal; Lydie Da Costa; Alexis Proust; Thierry Leblanc; Maud Simansour; Niklas Dahl; Anne-Sophie Fröjmark; Dagmar Pospisilova; Radek Cmejla; Alan H. Beggs; Mee Rie Sheen; Michael Landowski; Christopher Buros; Catherine Clinton; Lori J. Dobson; Adrianna Vlachos; Eva Atsidaftos; Jeffrey M. Lipton; Steven R. Ellis; Ugo Ramenghi; Irma Dianzani

Diamond‐Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype–phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database. Hum Mutat 31:1269–1279, 2010.


FEBS Letters | 1992

Vitamin E dietary supplementation inhibits transforming growth factor β1 gene expression in the rat liver

Maurizio Parola; Roberto Muraca; Irma Dianzani; Giuseppina Barrera; Gabriella Leonarduzzi; Paola Bendinelli; Roberta Piccoletti; Giuseppe Poli

Overexpression of transforming growth factor β1 (TGFβ1) and increased transcription of pro‐collagen type I, are known to represent major events implicated in the development of liver fibrosis under either experimental or clinical conditions. Here we report that long‐term dietary vitamin E supplementation in animals undergoing an experimental model of liver fibrosis (induced by chronic treatment of rats with carbon tetrachloride) results in a net inhibition of both hepatic TGFβ1 and α2 (I) procollagen mRNA levels. Moreover, of striking interest is the observation that vitamin E supplementation per so down‐modulates basal levels of TGFβ1 mRNA in the liver of untreated animals, suggesting that a dietary regimen rich in vitamin E may potentially interfere with both the initiation and progression of the fibrosclerotic processes.


American Journal of Human Genetics | 1998

Identification of microdeletions spanning the Diamond-Blackfan anemia locus on 19q13 and evidence for genetic heterogeneity.

Peter Gustavsson; Emanuela Garelli; Natalia Draptchinskaia; Sarah E. Ball; Thiebaut-Noel Willig; Dimitri Tentler; Irma Dianzani; Hope H. Punnett; Frank E. Shafer; Holger Cario; Ugo Ramenghi; Anders Glomstein; R. A. Pfeiffer; Andy Goringe; Nancy F. Olivieri; Elizabeth Smibert; Gil Tchernia; Göran Elinder; Niklas Dahl

Summary Diamond-Blackfan anemia (DBA) is a rare pure red-cell hypoplasia of unknown etiology and pathogenesis. A major DBA locus has previously been localized to chromosome 19q13.2. Samples from additional families have been collected to identify key recombinations, microdeletions, and the possibility of heterogeneity for the disorder. In total, 29 multiplex DBA families and 50 families that comprise sporadic DBA cases have been analyzed with polymorphic 19q13 markers, including a newly identified short-tandem repeat in the critical gene region. The results from DNA analysis of 29 multiplex families revealed that 26 of these were consistent with a DBA gene on 19q localized to within a 4.1-cM interval restricted by loci D19S200 and D19S178; however, in three multiplex families, the DBA candidate region on 19q13 was excluded from the segregation of marker alleles. Our results suggest genetic heterogeneity for DBA, and we show that a gene region on chromosome 19q segregates with the disease in the majority of familial cases. Among the 50 families comprising sporadic DBA cases, we identified two novel and overlapping microdeletions on chromosome 19q13. In combination, the three known microdeletions associated with DBA restrict the critical gene region to ∼1 Mb. The results indicate that a proportion of sporadic DBA cases are caused by deletions in the 19q13 region.


Human Mutation | 2008

RPS19 mutations in patients with Diamond-Blackfan anemia†

Maria Francesca Campagnoli; Ugo Ramenghi; Marta Armiraglio; Paola Quarello; Emanuela Garelli; Adriana Carando; Federica Avondo; Elisa Pavesi; Sébastien Fribourg; Pierre-Emmanuel Gleizes; Fabrizio Loreni; Irma Dianzani

Diamond‐Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty‐five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long‐term prognosis compared to other DBA patients. Hum Mutat 29(7), 911–920, 2008.


Mutation Research-reviews in Mutation Research | 2008

Genetic susceptibility to malignant pleural mesothelioma and other asbestos-associated diseases

Monica Neri; Donatella Ugolini; Irma Dianzani; Federica Gemignani; Stefano Landi; Alfredo Cesario; Corrado Magnani; Luciano Mutti; Riccardo Puntoni; Stefano Bonassi

Exposure to asbestos fibers is a major risk factor for malignant pleural mesothelioma (MPM), lung cancer, and other non-neoplastic conditions, such as asbestosis and pleural plaques. However, in the last decade many studies have shown that polymorphism in the genes involved in xenobiotic and oxidative metabolism or in DNA repair processes may play an important role in the etiology and pathogenesis of these diseases. To evaluate the association between diseases linked to asbestos and genetic variability we performed a review of studies on this topic included in the PubMed database. One hundred fifty-nine citations were retrieved; 24 of them met the inclusion criteria and were evaluated in the review. The most commonly studied GSTM1 polymorphism showed for all asbestos-linked diseases an increased risk in association with the null genotype, possibly linked to its role in the conjugation of reactive oxygen species. Studies focused on GSTT1 null and SOD2 Ala16Val polymorphisms gave conflicting results, while promising results came from studies on alpha1-antitrypsin in asbestosis and MPO in lung cancer. Among genetic polymorphisms associated to the risk of MPM, the GSTM1 null genotype and two variant alleles of XRCC1 and XRCC3 showed increased risks in a subset of studies. Results for the NAT2 acetylator status, SOD2 polymorphism and EPHX activity were conflicting. Major limitations in the study design, including the small size of study groups, affected the reliability of these studies. Technical improvements such as the use of high-throughput techniques will help to identify molecular pathways regulated by candidate genes.


Haematologica | 2010

Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations

Paola Quarello; Emanuela Garelli; Adriana Carando; Roberto Calabrese; Carlo Dufour; Daniela Longoni; Aldo Misuraca; Luciana Vinti; Anna Aspesi; Laura Biondini; Fabrizio Loreni; Irma Dianzani; Ugo Ramenghi

Background Diamond-Blackfan anemia is a rare, pure red blood cell aplasia of childhood due to an intrinsic defect in erythropoietic progenitors. About 40% of patients display various malformations. Anemia is corrected by steroid treatment in more than 50% of cases; non-responders need chronic transfusions or stem cell transplantation. Defects in the RPS19 gene, encoding the ribosomal protein S19, are the main known cause of Diamond-Blackfan anemia and account for more than 25% of cases. Mutations in RPS24, RPS17, and RPL35A described in a minority of patients show that Diamond-Blackfan anemia is a disorder of ribosome biogenesis. Two new genes (RPL5, RPL11), encoding for ribosomal proteins of the large subunit, have been reported to be involved in a considerable percentage of patients. Design and Methods In this genotype-phenotype analysis we screened the coding sequence and intron-exon boundaries of RPS14, RPS16, RPS24, RPL5, RPL11, and RPL35A in 92 Italian patients with Diamond-Blackfan anemia who were negative for RPS19 mutations. Results About 20% of the patients screened had mutations in RPL5 or RPL11, and only 1.6% in RPS24. All but three mutations that we report here are new mutations. No mutations were found in RPS14, RPS16, or RPL35A. Remarkably, we observed a higher percentage of somatic malformations in patients with RPL5 and RPL11 mutations. A close association was evident between RPL5 mutations and craniofacial malformations, and between hand malformations and RPL11 mutations. Conclusions Mutations in four ribosomal proteins account for around 50% of all cases of Diamond-Blackfan anemia in Italian patients. Genotype-phenotype data suggest that mutation screening should begin with RPL5 and RPL11 in patients with Diamond-Blackfan anemia with malformations.


American Journal of Human Genetics | 2000

Structure of the SLC7A7 gene and mutational analysis of patients affected by lysinuric protein intolerance.

Maria Pia Sperandeo; Maria Teresa Bassi; Mirko Riboni; Giancarlo Parenti; Anna Buoninconti; Marta Manzoni; Barbara Incerti; Maria Rosaria Larocca; Maja Di Rocco; Pietro Strisciuglio; Irma Dianzani; Rossella Parini; Miranda Candito; Fumio Endo; Andrea Ballabio; Generoso Andria; Gianfranco Sebastio; Giuseppe Borsani

Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of cationic amino acid transport caused by mutations in the SLC7A7 gene. We report the genomic structure of the gene and the results of the mutational analysis in Italian, Tunisian, and Japanese patients. The SLC7A7 gene consists of 10 exons; sequences of all of the exon-intron boundaries are reported here. All of the mutant alleles were characterized and eight novel mutations were detected, including two missense mutations, 242A-->C (M1L) and 1399C-->A (S386R); a nonsense mutation 967G-->A (W242X); two splice mutations IVS3 +1G-->A and IVS6 +1G-->T; a single-base insertion, 786insT; and two 4-bp deletions, 455delCTCT and 1425delTTCT. In addition, a previously reported mutation, 1625insATCA, was found in one patient. It is noteworthy that 242A-->C causes the change of Met1 to Leu, a rare mutational event previously found in a few inherited conditions. We failed to establish a genotype/phenotype correlation. In fact, both intrafamilial and interfamilial phenotypic variability were observed in homozygotes for the same mutation. The DNA-based tests are now easily accessible for molecular diagnosis, genetic counseling, and prenatal diagnosis of LPI.

Collaboration


Dive into the Irma Dianzani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Aspesi

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Quarello

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Umberto Dianzani

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Betti

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar

Claudio Santoro

University of Eastern Piedmont

View shared research outputs
Researchain Logo
Decentralizing Knowledge