Emanuele Cozzo
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emanuele Cozzo.
Physical Review X | 2013
Manlio De Domenico; Albert Solé-Ribalta; Emanuele Cozzo; Mikko Kivelä; Yamir Moreno; Mason A. Porter; Sergio Gómez; Alex Arenas
A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing ‘‘traditional’’ network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.
Physical Review E | 2013
Emanuele Cozzo; Raquel A. Baños; Sandro Meloni; Yamir Moreno
We develop a theoretical framework for the study of epidemiclike social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated with the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is inaccurate.
Physical Review E | 2012
Emanuele Cozzo; Alex Arenas; Yamir Moreno
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
Physical Review E | 2014
Rubén J. Sánchez-García; Emanuele Cozzo; Yamir Moreno
Network representations are useful for describing the structure of a large variety of complex systems. Although most studies of real-world networks suppose that nodes are connected by only a single type of edge, most natural and engineered systems include multiple subsystems and layers of connectivity. This new paradigm has attracted a great deal of attention and one fundamental challenge is to characterize multilayer networks both structurally and dynamically. One way to address this question is to study the spectral properties of such networks. Here we apply the framework of graph quotients, which occurs naturally in this context, and the associated eigenvalue interlacing results to the adjacency and Laplacian matrices of undirected multilayer networks. Specifically, we describe relationships between the eigenvalue spectra of multilayer networks and their two most natural quotients, the network of layers and the aggregate network, and show the dynamical implications of working with either of the two simplified representations. Our work thus contributes in particular to the study of dynamical processes whose critical properties are determined by the spectral properties of the underlying network.
Physical Review X | 2017
Guilherme Ferraz de Arruda; Emanuele Cozzo; Tiago P. Peixoto; Francisco A. Rodrigues; Yamir Moreno
We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes.
arXiv: Physics and Society | 2016
Emanuele Cozzo; Guilherme Ferraz de Arruda; Francisco A. Rodrigues; Yamir Moreno
Multilayer networks represent systems in which there are several topological levels each one representing one kind of interaction or interdependency between the systems’ elements. These networks have attracted a lot of attention recently because their study allows considering different dynamical modes concurrently. Here, we revise the main concepts and tools developed up to date. Specifically, we focus on several metrics for multilayer network characterization as well as on the spectral properties of the system, which ultimately enable for the dynamical characterization of several critical phenomena. The theoretical framework is also applied for description of real-world multilayer systems.
Scientific Reports | 2016
Quantong Guo; Emanuele Cozzo; Zhiming Zheng; Yamir Moreno
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Lévy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Lévy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Lévy random walk is the most efficient strategy. Our results give us a deeper understanding of Lévy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
Physical Review E | 2016
Emanuele Cozzo; Yamir Moreno
Multilayer networks have been the subject of intense research during the past few years, as they represent better the interdependent nature of many real-world systems. Here, we address the question of describing the three different structural phases in which a multiplex network might exist. We show that each phase can be characterized by the presence of gaps in the spectrum of the supra-Laplacian of the multiplex network. We therefore unveil the existence of different topological scales in the system, whose relation characterizes each phase. Moreover, by capitalizing on the coarse-grained representation that is given in terms of quotient graphs, we explain the mechanisms that produce those gaps as well as their dynamical consequences.
BMC Systems Biology | 2012
J C Sanz; Emanuele Cozzo; Javier Borge-Holthoefer; Yamir Moreno
BackgroundThe topological analysis of biological networks has been a prolific topic in network science during the last decade. A persistent problem with this approach is the inherent uncertainty and noisy nature of the data. One of the cases in which this situation is more marked is that of transcriptional regulatory networks (TRNs) in bacteria. The datasets are incomplete because regulatory pathways associated to a relevant fraction of bacterial genes remain unknown. Furthermore, direction, strengths and signs of the links are sometimes unknown or simply overlooked. Finally, the experimental approaches to infer the regulations are highly heterogeneous, in a way that induces the appearance of systematic experimental-topological correlations. And yet, the quality of the available data increases constantly.ResultsIn this work we capitalize on these advances to point out the influence of data (in)completeness and quality on some classical results on topological analysis of TRNs, specially regarding modularity at different levels.ConclusionsIn doing so, we identify the most relevant factors affecting the validity of previous findings, highlighting important caveats to future prokaryotic TRNs topological analysis.
Journal of Statistical Mechanics: Theory and Experiment | 2013
J C Sanz; Emanuele Cozzo; Yamir Moreno
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimera and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way.