Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emi Nagoshi is active.

Publication


Featured researches published by Emi Nagoshi.


Cell | 2004

Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells.

Emi Nagoshi; Camille Saini; Christoph Ruediger Bauer; Thierry Laroche; Felix Naef; Ueli Schibler

The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain and subsidiary oscillators in most peripheral cell types. While oscillators in SCN neurons are known to function in a self-sustained fashion, peripheral oscillators have been thought to damp rapidly when disconnected from the control exerted by the SCN. Using two reporter systems, we monitored circadian gene expression in NIH3T3 mouse fibroblasts in real time and in individual cells. In conjunction with mathematical modeling and cell co-culture experiments, these data demonstrated that in vitro cultured fibroblasts harbor self-sustained and cell-autonomous circadian clocks similar to those operative in SCN neurons. Circadian gene expression in fibroblasts continues during cell division, and our experiments unveiled unexpected interactions between the circadian clock and the cell division clock. Specifically, the circadian oscillator gates cytokinesis to defined time windows, and mitosis elicits phase shifts in circadian cycles.


Chromosoma | 2004

The mammalian circadian timing system: from gene expression to physiology

Frédéric Gachon; Emi Nagoshi; Steven A. Brown; Juergen Ripperger; Ueli Schibler

Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.


PLOS Biology | 2005

The Period Length of Fibroblast Circadian Gene Expression Varies Widely among Human Individuals

Steven A. Brown; Fabienne Fleury-Olela; Emi Nagoshi; Conrad Hauser; Cristiana Juge; Christophe A Meier; Rachel Chicheportiche; Jean-Michel Dayer; Urs-Vito Albrecht; Ueli Schibler

Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep–wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila

Elzbieta Kula-Eversole; Emi Nagoshi; Yuhua Shang; Joseph Rodriguez; Ravi Allada; Michael Rosbash

To compare circadian gene expression within highly discrete neuronal populations, we separately purified and characterized two adjacent but distinct groups of Drosophila adult circadian neurons: the 8 small and 10 large PDF-expressing ventral lateral neurons (s-LNvs and l-LNvs, respectively). The s-LNvs are the principal circadian pacemaker cells, whereas recent evidence indicates that the l-LNvs are involved in sleep and light-mediated arousal. Although half of the l-LNv–enriched mRNA population, including core clock mRNAs, is shared between the l-LNvs and s-LNvs, the other half is l-LNv– and s-LNv–specific. The distribution of four specific mRNAs is consistent with prior characterization of the four encoded proteins, and therefore indicates successful purification of the two neuronal types. Moreover, an octopamine receptor mRNA is selectively enriched in l-LNvs, and only these neurons respond to in vitro application of octopamine. Dissection and purification of l-LNvs from flies collected at different times indicate that these neurons contain cycling clock mRNAs with higher circadian amplitudes as well as at least a 10-fold higher fraction of oscillating mRNAs than all previous analyses of head RNA. Many of these cycling l-LNv mRNAs are well expressed but do not cycle or cycle much less well elsewhere in heads. The results suggest that RNA cycling is much more prominent in circadian neurons than elsewhere in heads and may be particularly important for the functioning of these neurons.


Nature Neuroscience | 2010

Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

Emi Nagoshi; Ken Sugino; Ela Kula; Etsuko Okazaki; Taro Tachibana; Sacha B. Nelson; Michael Rosbash

Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits.


Molecular and Cellular Biology | 2001

Dimerization of Sterol Regulatory Element-Binding Protein 2 via the Helix-Loop-Helix-Leucine Zipper Domain Is a Prerequisite for Its Nuclear Localization Mediated by Importin β

Emi Nagoshi; Yoshihiro Yoneda

ABSTRACT The sterol regulatory element-binding protein 2 (SREBP-2), a transcription factor of the basic helix-loop-helix-leucine zipper (bHLH-Zip) family, is synthesized in the form of a membrane-attached precursor molecule. When cells are deprived of sterols, a two-step proteolytic processing releases the transcriptionally active N-terminal segment of SREBP-2, thereby allowing it to enter the nucleus. In previous studies, we showed that the nuclear import of SREBP-2 occurs via the direct interaction of importin β with the HLH-Zip domain. In this study, in order to more completely understand the intracellular dynamics of SREBP-2, we focused on the manner by which importin β recognizes SREBP-2 at the initial step of the import. It was found that the active form of SREBP-2 exists as a stable dimer in solution and that the substitution of leucine residues for alanine in the leucine zipper motif disrupted the dimerization. It was also demonstrated that this mutant protein did not enter the nucleus either in vivo or in vitro. Solution binding assays, which involved the chemical cross-linking of wild-type or mutated SREBP-2 with importin β, revealed that the import-active complex appeared to be composed of a dimeric form of SREBP-2 and importin β. In addition, the SREBP-2 binding domain of importin β corresponded to an overlapping but not identical region for importin α binding, which may explain how importin β is able to recognize the dimeric HLH-Zip directly. These results indicate that dimerization is a prerequisite process for the nuclear import of SREBP-2 mediated by importin β.


Methods in Enzymology | 2005

Circadian gene expression in cultured cells

Emi Nagoshi; Steven A. Brown; Charna Dibner; Benoît Kornmann; Ueli Schibler

In mammals, circadian oscillators not only exist in specialized neurons of the suprachiasmatic nucleus, but in almost all peripheral cell types. These oscillators are operative even in established fibroblast cell lines, such as Rat-1 cells or NIH3T3 cells, and in primary fibroblasts from mouse embryos or adult animals. This can be demonstrated by treating such cells for a short time period with high concentrations of serum or chemicals that activate a large number of known signaling pathways. The possibility of studying circadian rhythms in cultured cells should facilitate the biochemical and genetic dissection of the circadian clockwork and should promote the discovery of new clock components.


Current Protein & Peptide Science | 2003

Basic Peptides as Functional Components of Non-viral Gene Transfer Vehicles

Mahito Nakanishi; Akiko Eguchi; Teruo Akuta; Emi Nagoshi; Shigeo Fujita; Jun Okabe; Takao Senda; Mamoru Hasegawa

Improving the performance of non-viral gene-delivery vehicles that consist of synthetic compounds and nucleic acids is a key to successful gene therapy. Supplementing synthetic vehicles with various biological functions by using natural or artificial peptides is a promising approach with which to achieve this goal. One of the obstacles hindering this effort is that some of the potentially useful peptides, especially those with many basic amino acid residues, interfere with the formation of the complex owing to strong electrostatic interactions with the nucleic acid. In this review, we describe our recent work in examining the potential of these peptides in gene delivery, using a recombinant lambda phage particle as the model for the gene-delivery complex. Lambda phage encapsulates large duplex DNA in a rigid polyplex-like shell with a diameter of 55 nm, and can display various peptides on this capsid, independently of particle formation. By examining the expression of marker genes encapsulated in the phage capsid, we have demonstrated that the protein transduction domain of HIV Tat protein and the nuclear localization signal derived from SV40 T antigen can remarkably facilitate the delivery of these marker genes across the two major barriers, the cell membrane and the nuclear membrane, respectively. Our results indicate that these basic peptides can constitute effective components of synthetic gene-transfer complexes, as long as sufficient copies are displayed on the outer surface of the complex.


Journal of Biological Chemistry | 2005

Importin α/β Mediates Nuclear Transport of a Mammalian Circadian Clock Component, mCRY2, Together with mPER2, through a Bipartite Nuclear Localization Signal

Yoko Sakakida; Yoichi Miyamoto; Emi Nagoshi; Makoto Akashi; Takahiro J. Nakamura; Takayoshi Mamine; Megumi Kasahara; Yasuhiro Minami; Yoshihiro Yoneda; Toru Takumi

Circadian rhythms, which period is approximately one day, are generated by endogenous biological clocks. These clocks are found throughout the animal kingdom, as well as in plants and even in prokaryotes. Molecular mechanisms for circadian rhythms are based on transcriptional oscillation of clock component genes, consisting of interwoven autoregulatory feedback loops. Among the loops, the nuclear transport of clock proteins is a crucial step for transcriptional regulation. In the present study, we showed that the nuclear entry of mCRY2, a mammalian clock component, is mediated by the importin α/β system through a bipartite nuclear localization signal in its carboxyl end. In vitro transport assay using digitonin-permeabilized cells demonstrated that all three importin αs, α1 (Rch1), α3 (Qip-1), and α7 (NPI-2), can mediate mCRY2 import. mCRY2 with the mutant nuclear localization signal failed to transport mPER2 into the nucleus of mammalian cultured cells, indicating that the nuclear localization signal identified in mCRY2 is physiologically significant. These results suggest that the importin α/β system is involved in nuclear entry of mammalian clock components, which is indispensable to transcriptional oscillation of clock genes.


Cold Spring Harbor Symposia on Quantitative Biology | 2007

Transcriptional Feedback and Definition of the Circadian Pacemaker in Drosophila and Animals

Michael Rosbash; S. Bradley; Sebastian Kadener; Y. Li; Weifei Luo; Jerome S. Menet; Emi Nagoshi; K. Palm; R. Schoer; Y. Shang; Chih-Hang Anthony Tang

The modern era of Drosophila circadian rhythms began with the landmark Benzer and Konopka paper and its definition of the period gene. The recombinant DNA revolution then led to the cloning and sequencing of this gene. This work did not result in a coherent view of circadian rhythm biochemistry, but experiments eventually gave rise to a transcription-centric view of circadian rhythm generation. Although these circadian transcription-translation feedback loops are still important, their contribution to core timekeeping is under challenge. Indeed, kinases and posttranslational regulation may be more important, based in part on recent in vitro work from cyanobacteria. In addition, kinase mutants or suspected kinase substrate mutants have unusually large period effects in Drosophila. This chapter discusses our recent experiments, which indicate that circadian transcription does indeed contribute to period determination in this system. We propose that cyanobacteria and animal clocks reflect two independent origins of circadian rhythms.

Collaboration


Dive into the Emi Nagoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge