Emiko Fujita
Nippon Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emiko Fujita.
Laboratory Investigation | 2011
Shinobu Kunugi; Akira Shimizu; Naomi Kuwahara; Xuanyi Du; Mikiko Takahashi; Yasuhiro Terasaki; Emiko Fujita; Akiko Mii; Shinya Nagasaka; Toshio Akimoto; Yukinari Masuda; Yuh Fukuda
Matrix metalloproteinases (MMPs) are endopeptidases that degrade extracellular matrix and involved in ischemic organ injuries. The present study was designed to determine the role of MMP-2 in the development of ischemic acute kidney injury (AKI). AKI was induced in MMP-2 wild-type (MMP-2+/+) mice by 30, 60, 90, and 120 min renal ischemia and reperfusion. Renal histology, expression and activity of MMP-2 and MMP-9, and renal function were examined during the development of AKI. AKI was also induced in MMP-2-deficient (MMP-2−/−) mice and MMP-2+/+ mice treated with inhibitor of MMPs (minocycline and synthetic peptide MMP inhibitor). In MMP-2+/+ mice, MMP-2 and MMP-9 activities increased significantly at 2 to 24 h, peaked at 6 h, after reperfusion. Immunohistochemical analysis identified MMP-2 in the interstitium around tubules and peritubular capillaries in the outer medulla. Acute tubular injury (ATI), including apoptosis and necrosis, was evident in the outer medulla at 24 h, along with renal dysfunction. As ischemia period increases, MMP-2 and MMP-9 activities at 6 h and severity of AKI at 24 h increased depending on the duration of ischemia between 30 and 120 min. However, the kidneys of MMP-2−/− mice showed minimal ATI; serum creatinine 24 h after reperfusion was significantly low in these mice. Inhibitors of MMPs reduced ATI and improved renal dysfunction at 24 h. We conclude that MMPs, especially MMP-2 have a pathogenic role in ischemia-reperfusion AKI, and that inhibitors of MMPs can protect against ischemic AKI.
American Journal of Physiology-renal Physiology | 2010
Kaoru Aki; Akira Shimizu; Yukinari Masuda; Naomi Kuwahara; Takashi Arai; Arimi Ishikawa; Emiko Fujita; Akiko Mii; Yasuhiro Natori; Yoshitaka Fukunaga; Yuh Fukuda
Macrophages are heterogeneous immune cell populations that include classically activated and alternatively activated (M2) macrophages. We examined the anti-inflammatory effect of ANG II type 1 receptor (AT(1)R) blocker (ARB) on glomerular inflammation in a rat model of anti-glomerular basement membrane (GBM) glomerulonephritis (GN). The study focused on infiltrating CD8(+) and CD4(+) cells and macrophages, as well as the heterogeneity of intraglomerular macrophages. Wistar-Kyoto rats were treated with high-dose olmesartan (3 mg.kg(-1).day(-1)), low-dose olmesartan (0.3 mg.kg(-1).day(-1)), or vehicle (control) 7 days before induction of anti-GBM GN. Control rats showed mainly CD8(+) cells and ED1(+) macrophages, with a few CD4(+) cells infiltrating the glomeruli. Necrotizing and crescentic glomerular lesions developed by day 7 with the increase of proteinuria. AT(1)R was expressed on CD8(+) and CD4(+) cells and on ED1(+) macrophages. Low-dose ARB had no anti-inflammatory effects in anti-GBM GN. However, high-dose ARB reduced glomerular infiltration of CD8(+) cells and ED1(+) macrophages and suppressed necrotizing and crescentic lesions by days 5 to 7 (P < 0.05). In addition, high-dose ARB reduced the numbers of ED3(+)-activated macrophages, suppressed glomerular TNF-alpha and IFN-gamma production, and downregulated M1-related chemokine and cytokines (monocyte chemoattractant protein type 1, IL-6, and IL-12). High-dose ARB also enhanced ED2(+) M2 macrophages by day 7 with upregulation of glomerular IL-4 and IL-13 and augmented CCL17, IL-1 receptor antagonist, and IL-10. We concluded that high-dose ARB inhibits glomerular inflammation by increasing the numbers of M2 macrophages and upregulation of anti-inflammatory cytokines and by suppressing M1 macrophage development with downregulation of M1-related proinflammatory cytokines.
American Journal of Pathology | 2010
Emiko Fujita; Akira Shimizu; Yukinari Masuda; Naomi Kuwahara; Takashi Arai; Shinya Nagasaka; Kaoru Aki; Akiko Mii; Yasuhiro Natori; Yasuhiko Iino; Yasuo Katayama; Yuh Fukuda
Macrophages are heterogeneous and include classically activated M1 and alternatively activated M2 macrophages, characterized by pro- and anti-inflammatory functions, respectively. Macrophages that express heme oxygenase-1 also exhibit anti-inflammatory effects. We assessed the anti-inflammatory effects of statin in experimental anti-glomerular basement membrane glomerulonephritis and in vitro, focusing on the macrophage heterogeneity. Rats were induced anti-glomerular basement membrane glomerulonephritis and treated with atorvastatin (20 mg/kg/day) or vehicle (control). Control rats showed infiltration of macrophages in the glomeruli at day 3 and developed crescentic glomerulonephritis by day 7, together with increased mRNA levels of the M1 macrophage-associated cytokines, interferon-gamma, tumor necrosis factor-alpha, and interleukin-12. In contrast, statin reduced the level of proteinuria, reduced infiltration of macrophages in glomeruli with suppression of monocyte chemotactic protein-1 expression, and inhibited the formation of necrotizing and crescentic lesions. The number of glomerular ED3-positive macrophages decreased with down-regulation of M1 macrophage-associated cytokines. Furthermore, statin augmented ED2-positive M2 macrophages with up-regulation of the M2 macrophage-associated chemokines and cytokines, chemokine (C-C motif) Iigand-17 and interleukin-10. Statin also increased the glomerular interleukin-10-expressing heme oxygenase-1-positive macrophages. Statin inhibited macrophage development, and suppressed ED3-positive macrophages, but augmented ED2-positive macrophages in M2-associated cytokine environment in vitro. We conclude that the anti-inflammatory effects of statin in glomerulonephritis are mediated through inhibition of macrophage infiltration as well as augmentation of anti-inflammatory macrophages.
Pathology International | 2011
Akiko Mii; Akira Shimizu; Tomohiro Kaneko; Emiko Fujita; Megumi Fukui; Teppei Fujino; Kouichi Utsumi; Hiroki Yamaguchi; Kenji Tajika; Shin-ichi Tsuchiya; Yasuhiko Iino; Yasuo Katayama; Yuh Fukuda
Thrombotic microangiopathy (TMA) is a major complication after hematopoietic stem cell transplantation (HSCT). In this study, we examined the clinical and pathologic features of 2 patients and 5 autopsy cases with HSCT‐associated renal TMA to clarify the association between graft‐versus‐host disease (GVHD) and renal TMA. The median interval between HSCT and renal biopsy or autopsy was 7 months (range 3–42 months). Clinically, acute and chronic GVHD occurred in 7 and 4 patients, respectively. Clinical evidence for TMA was detected in 2 patients, while chronic kidney disease developed in all patients. The main histopathological findings were diffuse endothelial injury in glomeruli, peritubular capillaries (PTCs), and small arteries. In addition, all cases showed glomerulitis, renal tubulitis, and peritubular capillaritis with infiltration of CD3+ T cells and TIA‐1+ cytotoxic cells, suggesting that GVHD occurred during the development of TMA. Diffuse and patchy C4d deposition was noted in glomerular capillaries and PTCs, respectively, in 2 biopsy and 2 autopsy cases, suggesting the involvement of antibody‐mediated renal endothelial injury in more than 50% of renal TMA cases. In conclusion, the kidney is a potential target of chronic GVHD that may induce the development of HSCT‐associated TMA. Importantly, some cases are associated with chronic humoral GVHD.
Clinical Transplantation | 2011
Akira Shimizu; Seiichiro Higo; Emiko Fujita; Akiko Mii; Tomohiro Kaneko
Shimizu A, Higo S, Fujita E, Mii A, Kaneko T. Focal segmental glomerulosclerosis after renal transplantation. Clin Transplant 2011: 25 (Suppl. 23): 6–14. © 2011 John Wiley & Sons A/S.
Laboratory Investigation | 2010
Yukinari Masuda; Akira Shimizu; Mitue Kataoka; Takashi Arai; Arimi Ishikawa; Xuanyi Du; Sabine Kyoko Saito; Kaoru Aki; Shinya Nagasaka; Akiko Mii; Emiko Fujita; Yuh Fukuda
The pathological process of glomerulonephritis (GN) includes glomerular capillary damage, and vascular endothelial growth factor (VEGF) has an important role in glomerular capillary repair in GN. We examined the effect of inhibition of glomerular capillary repair after capillary injury in GN. Experimental Thy-1 GN was induced in rats that were divided into two groups: rats that received anti-VEGF neutralizing antibody (50 μg per 100 g body weight per day) and those treated with the vehicle from day 2 to day 9. We assessed the renal function and histopathology serially until week 6. Rats of the Thy-1 GN group showed diffuse glomerular mesangiolysis with ballooning destruction of the capillary network by day 3. VEGF164 protein levels increased in the damaged glomeruli during days 5 to 10, and endothelial-cell proliferation increased with capillary repair in the vehicle-injected group. Proliferative GN resolved subsequently with decreased mesangial hypercellularity, and recovery of most of the glomeruli to the normal structure was evident by week 6. In contrast, administration of anti-VEGF antibody significantly decreased endothelial-cell proliferation and capillary repair in glomeruli by week 2. Thereafter, glomerular mesangial-cell proliferation and activation continued with persistent infiltration of macrophages. At week 6, segmental glomerular sclerosis developed with mesangial matrix accumulation and proteinuria. Deposition of type I collagen was also noted in sclerotic lesions. We conclude that impaired capillary repair was the underlying mechanism in the prolongation of glomerular inflammation in proliferative GN and in the development of glomerular sclerosis. Capillary repair has an important role in the recovery of glomerular damage and in the resolution of proliferative GN.
Human Pathology | 2012
Emiko Fujita; Akira Shimizu; Tomohiro Kaneko; Yukinari Masuda; Chikara Ishihara; Akiko Mii; Seiichiro Higo; Yusuke Kajimoto; Go Kanzaki; Shinya Nagasaka; Yasuhiko Iino; Yasuo Katayama; Yuh Fukuda
Proliferative glomerulonephritis with monoclonal immunoglobulin G deposits is a recently described disease entity, characterized by nonorganized electron-dense deposits in glomeruli and immunofluorescence findings indicating monoclonal immunoglobulin G deposits. The pathogenesis of many cases of proliferative glomerulonephritis with monoclonal immunoglobulin G deposits remains unknown. We herein report 2 patients with parvovirus B19 infection who developed acute nephritic syndrome with hypocomplementemia (patient 1) or persistent proteinuria and congestive heart failure (patient 2); however, neither patient had detectable levels of serum monoclonal immunoglobulin G. Renal biopsy in both patients showed diffuse endocapillary proliferative glomerulonephritis with monoclonal immunoglobulin G3κ deposits, and electron microscopy showed nonorganized electron-dense deposits mainly in the subendothelial and mesangial areas. Clinical symptoms, abnormal laboratory findings, and urinary abnormalities recovered spontaneously in both cases within 4 weeks. Our 2 cases may be the first reported patients with proliferative glomerulonephritis with monoclonal immunoglobulin G deposits possibly associated with parvovirus B19 infection. Virus infection-associated immune disorders could be implicated in the pathogenesis of proliferative glomerulonephritis with monoclonal immunoglobulin G deposits.
Clinical and Experimental Nephrology | 2012
Maki Tanabe; Akira Shimizu; Yukinari Masuda; Mitue Kataoka; Arimi Ishikawa; Kyoko Wakamatsu; Akiko Mii; Emiko Fujita; Seiichiro Higo; Tomohiro Kaneko; Hiroshi Kawachi; Yuh Fukuda
BackgroundThe mechanisms and morphological characteristics of lymphatic vascular development in embryonic kidneys remain uncertain.MethodsWe examined the distribution and characteristics of lymphatic vessels in developing rat kidneys using immunostaining for podoplanin, prox-1, Ki-67, type IV collagen (basement membrane: BM), and α-smooth muscle actin (αSMA: pericytes or mural cells). We also examined the expression of VEGF-C.ResultsAt embryonic day 17 (E17), podoplanin-positive lymphatic vessels were observed mainly in the kidney hilus. At E20, lymphatic vessels extended further into the developing kidneys along the interlobar vasculature. In 1-day-old pups (P1) to P20, lymphatic vessels appeared around the arcuate arteries and veins of the kidneys, with some reaching the developing cortex via interlobular vessels. In 8-week-old adult rats, lymphatic vessels were extensively distributed around the blood vasculature from the renal hilus to cortex. Only lymphatic capillaries lacking continuous BM and αSMA-positive cells were present within adult kidneys, with none observed in renal medulla. VEGF-C was upregulated in the developing kidneys and expressed mainly in tubules. Importantly, the developing lymphatic vessels were characterized by endothelial cells immunopositive for podoplanin, prox-1, and Ki-67, with no surrounding BM or αSMA-positive cells.ConclusionDuring nephrogenesis, lymphatic vessels extend from the renal hilus into the renal cortex along the renal blood vasculature. Podoplanin, prox-1, Ki-67, type IV collagen, and αSMA immunostaining can detect lymphatic vessels during lymphangiogenesis.
Nephron Experimental Nephrology | 2012
Tomohiro Kaneko; Akira Shimizu; Akiko Mii; Emiko Fujita; Teppei Fujino; Shinobu Kunugi; Xuanyi Du; Toshio Akimoto; Shuichi Tsuruoka; Ryuji Ohashi; Yukinari Masuda; Yasuhiko Iino; Yasuo Katayama; Yuh Fukuda
Background/Aims: Matrix metalloproteinases (MMPs) are zinc endopeptidases that degrade extracellular matrix and are involved in the pathogenesis of ischemic damage in acute kidney injury (AKI). In the present study, we analyzed the role of MMP-2 in the repair process in ischemic AKI. Methods: AKI was induced in MMP-2 wild-type (MMP-2+/+) and MMP-2-deficient (MMP-2-/-) mice by 90-min renal artery clamping followed by reperfusion. Renal histology and the activity and distribution of MMP-2 were examined from day 1 to day 14. During the recovery from AKI, MMP-2+/+ mice were also treated with MMP-2/MMP-9 inhibitor. Results: In both MMP-2+/+ and MMP-2-/- mice, AKI developed on day 1 after ischemia/reperfusion with widespread acute tubular injury, but subsequent epithelial cell proliferation was evident on days 3-7. During the repair process, active MMP-2 and MMP-9 increased in regenerating tubular epithelial cells in MMP-2+/+ mice on days 7-14, and the tubular repair process was almost complete by day 14. On the other hand, in MMP-2-/- mice, less prominent proliferation of tubular epithelial cells was evident on days 3 and 7, and damaged tubules that were covered with elongated and immature regenerated epithelial cells were identified on days 7 and 14. Incomplete recovery of injured microvasculature was also noted with persistent macrophage infiltration. Similarly, treatment with MMP-2/MMP-9 inhibitor resulted in impaired recovery in MMP-2+/+ mice. Conclusion: MMP-2 is involved in tubular repair after AKI. The use of the MMP-2/MMP-9 inhibitor was a disadvantage when it was administered during the repair stage of ischemic AKI. Treatment with MMP inhibitor for AKI needs to be modified to enhance recovery from AKI.
Nephron Experimental Nephrology | 2012
Taiko Yoshida; Akira Shimizu; Yukinari Masuda; Akiko Mii; Emiko Fujita; Kaoru Yoshizaki; Seiichiro Higo; Go Kanzaki; Yusuke Kajimoto; Hideki Takano; Yuh Fukuda
Background/Aims: Renal tubular cell death in ischemia-reperfusion does not follow the classical apoptosis or necrosis phenotype. We characterized the morphological and biochemical features of injured tubular epithelial cells in ischemic acute kidney injury (AKI). Methods: Ischemic AKI was induced in rats by 60 min of ischemia followed by 24 h of reperfusion. Light and electron microscopic TUNEL (LM-TUNEL and EM-TUNEL), gel electrophoresis of extracted DNA, and caspase-3 involvement were examined during the development of death. Results: Damaged tubular epithelial cells with condensed and LM-TUNEL-positive (+) nuclei were prominent at 12 and 18 h after reperfusion with DNA ‘ladder’ pattern on gel electrophoresis. EM-TUNEL+ cells were characterized by nuclei with condensed and clumping chromatin, whereas the cytoplasm showed irreversible necrosis. The protein levels and activity of caspase-3 did not increase in kidneys after reperfusion. In addition, caspase inhibitor (ZVAD-fmk) failed to inhibit DNA fragmentation and prevent tubular epithelial cell death in ischemic AKI. Conclusion: Caspase-3-independent internucleosomal DNA fragmentation occurs in injured tubular epithelial cells undergoing irreversible necrosis in ischemic AKI. The manner of this cell death may be identical to the cell death termed apoptotic necrosis, aponecrosis, or necrapoptosis. Ischemia-reperfusion injury activates caspase-3-independent endonuclease, which in turn induces irreversible damage of tubular epithelial cells, and may contribute to the initiation and development of AKI.