Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emil Gustafsson is active.

Publication


Featured researches published by Emil Gustafsson.


Carbohydrate Polymers | 2014

Towards a super-strainable paper using the Layer-by-Layer technique

Andrew Marais; Simon Utsel; Emil Gustafsson; Lars Wågberg

The Layer-by-Layer technique was used to build a polyelectrolyte multilayer on the surface of pulp fibres. The treated fibres were then used to prepare paper sheets and the mechanical properties of these sheets were evaluated as a function of the number of bi-layers on the fibres. Two different systems were studied: polyethyleneimine (PEI)/nanofibrillated cellulose (NFC), and polyallylamine hydrochloride (PAH)/hyaluronic acid (HA). Model experiments using dual polarization interferometry and SiO₂ surfaces showed that the two systems gave different thicknesses for a given number of layers. The outer layer was found to be a key parameter in the PEI/NFC system, whereas it was less important in the PAH/HA system. The mechanical properties of the sheets made from the PAH/HA treated fibres were significantly greater than those made from untreated fibres, reaching 70 Nm/g in tensile index and 6.5% in strain at break. Such a modification could be very useful for 3D forming of paper, opening new perspectives in for example the packaging industry, with a renewable and biodegradable product as a potential substitute for some of the traditional oil-based plastics.


Biomacromolecules | 2012

Direct adhesive measurements between wood biopolymer model surfaces

Emil Gustafsson; Erik Johansson; Lars Wågberg; Torbjörn Pettersson

For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations.


Biomacromolecules | 2014

Robust and Tailored Wet Adhesion in Biopolymer Thin Films

Torbjörn Pettersson; Samuel A. Pendergraph; Simon Utsel; Andrew Marais; Emil Gustafsson; Lars Wågberg

Model layer-by-layer (LbL) assemblies of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature.


ACS Applied Materials & Interfaces | 2016

Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive

Emil Gustafsson; Robert Pelton; Lars Wågberg

The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values.


ACS Applied Materials & Interfaces | 2017

Redox Properties of Polyvinylamine-g-TEMPO in Multilayer Films with Sodium Poly(styrenesulfonate)

Qiang Fu; Igor Zoudanov; Emil Gustafsson; Dong Yang; Leyla Soleymani; Robert Pelton

Layer-by-layer (LbL) assemblies of polyvinylamine with grafted TEMPO moieties (PVAm-T) with sodium polystyrenesulfonate (PSS) were prepared on gold-sulfonate surfaces, and the redox properties were measured by cyclic voltammetry. LbL compositions were probed by quartz crystal microbalance (wet) and ellipsometric (dry) film measurements. Approximately 30% of the TEMPO moieties in the LbL assemblies were redox-active when the total TEMPO coverage was varied up to 6 μmol/m2, by either varying the TEMPO content in PVAm-T or by varying the number of LbL bilayers. Three non-redox-active PVAm/PSS blocking bilayers were required to prevent the electrode from oxidizing PVAm-T in the exterior LbL layer. This suggests significant intermixing between the layers in the LbL film. In addition to contributing to the small but growing body of work on redox polymers based on grafted TEMPO, this work serves as a reference point for understanding the redox properties of colloidal PVAm-T-laccase complexes in future work.


ACS Applied Materials & Interfaces | 2017

Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing

Dong Yang; Emil Gustafsson; Taylor C. Stimpson; Anton Esser; Robert Pelton

Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.


Langmuir | 2015

Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties.

Emil Gustafsson; Jonas Hedberg; Per A. Larsson; Lars Wågberg; C. Magnus Johnson

Adsorption of a single layer of molecules on a surface, or even a reorientation of already present molecules, can significantly affect the surface properties of a material. In this study, vibrational sum frequency spectroscopy (VSFS) has been used to study the change in molecular structure at the solid-air interface following thermal curing of polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Significant changes in the VSF spectra were observed after curing. These changes were accompanied by a distinct increase in the static water contact angle, showing how the properties of the layer-by-layer molecular structure are controlled not just by the polyelectrolyte in the outermost layer but ultimately by the orientation of the chemical constituents in the outermost layers.


Langmuir | 2017

Relating Redox Properties of Polyvinylamine-g-TEMPO/Laccase Hydrogel Complexes to Cellulose Oxidation

Qiang Fu; Alexander Sutherland; Emil Gustafsson; M. Monsur Ali; Leyla Soleymani; Robert Pelton

The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold sulfonate EQCM-D sensor surfaces giving a hydrogel film that was 7 nm thick, 89% water, and encasing laccase (200 mM) and TEMPO moieties (33 mM). For DS values >10%, all of the TEMPOs in the hydrogel film were redox-active in that they could be oxidized by the electrode. With hydrogel layers made with lower-DS PVAm-Ts, only about half of the TEMPOs were redox-active; 10% DS appears to be a percolation threshold for complete TEMPO-to-TEMPO electron transport. In parallel experiments with hydrogel complexes adsorbed onto regenerated cellulose films, the aldehyde concentrations increased monotonically with the density of redox-active TEMPO moieties in the adsorbed hydrogel. The maximum density of aldehydes was 0.24 μmol/m2, about 10 times less than the theoretical concentration of primary hydroxyl groups exposed on crystalline cellulose surfaces. Previous work showed that PVAm-T/laccase complexes are effective adhesives between wet cellulose surfaces when the DS is >10%. This work supports the explanation that TEMPO-to-TEMPO electron transport is required for the generation of aldehydes necessary for wet adhesion to PVAm.


Nordic Pulp & Paper Research Journal | 2018

Wet-peel: a tool for comparing wet-strength resins

Dong Yang; John-Louis DiFlavio; Emil Gustafsson; Robert Pelton

Abstract We propose that a testing procedure we call wet-peel significantly augments conventional wet paper testing when comparing wet-strength resin efficacy or the influence wood pulp fiber surface treatments on wet paper strength. A thin layer of wet-strength resin is sandwiched between a pair of thin, wet regenerated cellulose membranes to form a laminate, which is a physical model for fiber-fiber joints in paper. In the wet-peel method, the ninety-degree wet-delamination force gives a direct measure of adhesion in the wet cellulose-cellulose joint. Wet-peel measurements offer: 1) comparisons of wet-strength polymers at the same content of polymer in the laminate joint without the influences of varying fines contents, formation or paper density; 2) measurements of both the wet-strength of cured, dried joints, and the strength of never-dried joints (i. e. analogous to wet-web strength); 3) demonstrations of the influence of fiber surface chemistry modifications including oxidation and the presence of firmly bound polymers; and, 4) the evaluation of more exotic joint structures including layer-by-layer assemblies, microgels and colloidal polyelectrolyte complexes.


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2012

Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks

Emil Gustafsson; Per A. Larsson; Lars Wågberg

Collaboration


Dive into the Emil Gustafsson's collaboration.

Top Co-Authors

Avatar

Lars Wågberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Marais

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Simon Utsel

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Torbjörn Pettersson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per A. Larsson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Magnus Johnson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Johansson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas Hedberg

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge