Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emil K. Nilsson is active.

Publication


Featured researches published by Emil K. Nilsson.


Psychoneuroendocrinology | 2013

Acute sleep deprivation increases portion size and affects food choice in young men

Pleunie S. Hogenkamp; Emil K. Nilsson; Victor C. Nilsson; Colin D. Chapman; Heike Vogel; Lina Lundberg; Sanaz Zarei; Jonathan Cedernaes; Frida H. Rångtell; Jan-Erik Broman; Suzanne L. Dickson; Jeffrey Michael Brunstrom; Christian Benedict; Helgi B. Schiöth

Acute sleep loss increases food intake in adults. However, little is known about the influence of acute sleep loss on portion size choice, and whether this depends on both hunger state and the type of food (snack or meal item) offered to an individual. The aim of the current study was to compare portion size choice after a night of sleep and a period of nocturnal wakefulness (a condition experienced by night-shift workers, e.g. physicians and nurses). Sixteen men (age: 23 ± 0.9 years, BMI: 23.6 ± 0.6 kg/m(2)) participated in a randomized within-subject design with two conditions, 8-h of sleep and total sleep deprivation (TSD). In the morning following sleep interventions, portion size, comprising meal and snack items, was measured using a computer-based task, in both fasted and sated state. In addition, hunger as well as plasma levels of ghrelin were measured. In the morning after TSD, subjects had increased plasma ghrelin levels (13%, p=0.04), and chose larger portions (14%, p=0.02), irrespective of the type of food, as compared to the sleep condition. Self-reported hunger was also enhanced (p<0.01). Following breakfast, sleep-deprived subjects chose larger portions of snacks (16%, p=0.02), whereas the selection of meal items did not differ between the sleep interventions (6%, p=0.13). Our results suggest that overeating in the morning after sleep loss is driven by both homeostatic and hedonic factors. Further, they show that portion size choice after sleep loss depend on both an individuals hunger status, and the type of food offered.


Gene | 2014

Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity.

Markus Sällman Almén; Emil K. Nilsson; Josefin A. Jacobsson; Ineta Kalnina; Janis Klovins; Robert Fredriksson; Helgi B. Schiöth

The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases.


Genome Medicine | 2015

Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers

Sarah Voisin; Markus Sällman Almén; Galina Y. Zheleznyakova; Lina Lundberg; Sanaz Zarei; Sandra Castillo; Fia Ence Eriksson; Emil K. Nilsson; Matthias Blüher; Yvonne Böttcher; Peter Kovacs; Janis Klovins; Mathias Rask-Andersen; Helgi B. Schiöth

BackgroundThe mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles.MethodsWe genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121–133) and an additional dataset in subcutaneous and visceral fat (n = 149).ResultsWe found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts.ConclusionsOur results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.


Journal of Evolutionary Biology | 2006

Population size, female fecundity, and sex ratio variation in gynodioecious Plantago maritima

Emil K. Nilsson; Jon Ågren

Theory predicts that the sex ratio of gynodioecious populations (in which hermaphrodites and females coexist) will be affected by the relative female fitness of females and hermaphrodites, and by founder events and genetic drift in small populations. We documented the sex ratio and size of 104 populations of the gynodioecious, perennial herb Plantago maritima in four archipelagos in eastern Sweden and western Finland (from latitude 53 to 64 °N). The sex ratio varied significantly both among and within archipelagos (range 0–70% females, median 6.3% females). The frequency of females was highest in the northernmost archipelago and lowest in the southernmost archipelago. As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. The relative fecundity of female plants (mean seed output per female/mean seed output per hermaphrodite) ranged from 0.43 to 2.16 (median 1.01, n = 12 populations). Among the 12 populations sampled for seed production (four in each of three archipelagos), the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites and by stochastic processes in small populations.


Obesity | 2013

Acute sleep deprivation increases food purchasing in men

Colin D. Chapman; Emil K. Nilsson; Victor C. Nilsson; Jonathan Cedernaes; Frida H. Rångtell; Heike Vogel; Suzanne L. Dickson; Jan-Erik Broman; Pleunie S. Hogenkamp; Helgi B. Schiöth; Christian Benedict

To investigate if acute sleep deprivation affects food purchasing choices in a mock supermarket.


Sleep | 2014

Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men.

Christian Benedict; Jonathan Cedernaes; Vilmantas Giedraitis; Emil K. Nilsson; Pleunie S. Hogenkamp; Evelina Vågesjö; Sara Massena; Ulrika Pettersson; Gustaf Christoffersson; Mia Phillipson; Jan-Erik Broman; Lars Lannfelt; Henrik Zetterberg; Helgi B. Schiöth

STUDY OBJECTIVES To investigate whether total sleep deprivation (TSD) affects circulating concentrations of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in humans. These factors are usually found in the cytoplasm of neurons and glia cells. Increasing concentrations of these factors in blood may be therefore indicative for either neuronal damage, impaired blood brain barrier function, or both. In addition, amyloid β (Aβ) peptides 1-42 and 1-40 were measured in plasma to calculate their ratio. A reduced plasma ratio of Aβ peptides 1-42 to 1-40 is considered an indirect measure of increased deposition of Aβ 1-42 peptide in the brain. DESIGN Subjects participated in two conditions (including either 8-h of nocturnal sleep [22:30-06:30] or TSD). Fasting blood samples were drawn before and after sleep interventions (19:30 and 07:30, respectively). SETTING Sleep laboratory. PARTICIPANTS 15 healthy young men. RESULTS TSD increased morning serum levels of NSE (P = 0.002) and S-100B (P = 0.02) by approximately 20%, compared with values obtained after a night of sleep. In contrast, the ratio of Aβ peptides 1-42 to 1-40 did not differ between the sleep interventions. CONCLUSIONS Future studies in which both serum and cerebrospinal fluid are sampled after sleep loss should elucidate whether the increase in serum neuron-specific enolase and S100 calcium binding protein B is primarily caused by neuronal damage, impaired blood brain barrier function, or is just a consequence of increased gene expression in non-neuronal cells, such as leukocytes.


PLOS ONE | 2014

BDNF Polymorphisms Are Linked to Poorer Working Memory Performance, Reduced Cerebellar and Hippocampal Volumes and Differences in Prefrontal Cortex in a Swedish Elderly Population

Samantha J. Brooks; Emil K. Nilsson; Josefin A. Jacobsson; Dan J. Stein; Robert Fredriksson; Lars Lind; Helgi B. Schiöth

Background Brain-derived neurotrophic factor (BDNF) links learning, memory and cognitive decline in elderly, but evidence linking BDNF allele variation, cognition and brain structural differences is lacking. Methods 367 elderly Swedish men (n = 181) and women (n = 186) from Prospective Investigation of the Vasculature in Uppsala seniors (PIVUS) were genotyped and the BDNF functional rs6265 SNP was further examined in subjects who completed the Trail Making Task (TMT), verbal fluency task, and had a magnetic resonance imaging (MRI) scan. Voxel-based morphometry (VBM) examined brain structure, cognition and links with BDNF. Results The functional BDNF SNP (rs6265,) predicted better working memory performance on the TMT with positive association of the Met rs6265, and was linked with greater cerebellar, precuneus, left superior frontal gyrus and bilateral hippocampal volume, and reduced brainstem and bilateral posterior cingulate volumes. Conclusions The functional BDNF polymorphism influences brain volume in regions associated with memory and regulation of sensorimotor control, with the Met rs6265 allele potentially being more beneficial to these functions in the elderly.


Omics A Journal of Integrative Biology | 2016

Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

Emil K. Nilsson; Adrian Boström; Jessica Mwinyi; Helgi B. Schiöth

Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.


Brain Behavior and Immunity | 2014

Acute sleep deprivation in healthy young men: impact on population diversity and function of circulating neutrophils.

Gustaf Christoffersson; Evelina Vågesjö; Ulrika Pettersson; Sara Massena; Emil K. Nilsson; Jan-Erik Broman; Helgi B. Schiöth; Christian Benedict; Mia Phillipson

Lack of sleep greatly affects our immune system. The present study investigates the acute effects of total sleep deprivation on blood neutrophils, the most abundant immune cell in our circulation and the first cell type recruited to sites of infection. Thus, the population diversity and function of circulating neutrophils were compared in healthy young men following one night of total sleep deprivation (TSD) or after 8h regular sleep. We found that neutrophil counts were elevated after nocturnal wakefulness (2.0 ± 0.2 × 10(9)/l vs. 2.6 ± 0.2 × 10(9)/l, sleep vs. TSD, respectively) and the population contained more immature CD16(dim)/CD62L(bright) cells (0.11 ± 0.040 × 10(9)/l [5.5 ± 1.1%] vs. 0.26 ± 0.020 × 10(9)/l [9.9 ± 1.4%]). As the rise in numbers of circulating mature CD16(bright)/CD62L(bright) neutrophils was less pronounced, the fraction of this subpopulation showed a significant decrease (1.8 ± 0.15 × 10(9)/l [88 ± 1.8%] vs. 2.1 ± 0.12 × 10(9)/l [82 ± 2.8%]). The surface expression of receptors regulating mobilization of neutrophils from bone marrow was decreased (CXCR4 and CD49d on immature neutrophils; CXCR2 on mature neutrophils). The receptor CXCR2 is also involved in the production of reactive oxygen species (ROS), and in line with this, total neutrophils produced less ROS. In addition, following sleep loss, circulating neutrophils exhibited enhanced surface levels of CD11b, which indicates enhanced granular fusion and concomitant protein translocation to the membrane. Our findings demonstrate that sleep loss exerts significant effects on population diversity and function of circulating neutrophils in healthy men. To which extent these changes could explain as to why people with poor sleep patterns are more susceptible to infections warrants further investigation.


PLOS ONE | 2015

Roux-En Y Gastric Bypass Surgery Induces Genome-Wide Promoter-Specific Changes in DNA Methylation in Whole Blood of Obese Patients

Emil K. Nilsson; Barbara Ernst; Sarah Voisin; Markus Sällman Almén; Christian Benedict; Jessica Mwinyi; Robert Fredriksson; Bernd Schultes; Helgi B. Schiöth

Context DNA methylation has been proposed to play a critical role in many cellular and biological processes. Objective To examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription. Methods Promoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m2, 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast. Results The mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points. Conclusions Epigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery. Clinical Trial ClinicalTrials.gov NCT01730742

Collaboration


Dive into the Emil K. Nilsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Vogel

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge