Emile Drijvers
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emile Drijvers.
Journal of Agricultural and Food Chemistry | 2017
Astrid Foubert; Natalia V. Beloglazova; Anna Viktorovna Gordienko; Mickael D. Tessier; Emile Drijvers; Zeger Hens; Sarah De Saeger
A multiplex lateral flow immunoassay (LFIA) for the determination of the mycotoxins deoxynivalenol, zearalenone, and T2/HT2-toxin in barley was developed with luminescent quantum dots (QDs) as label. The synthesized QDs were hydrophilized by two strategies, that is, coating with an amphiphilic polymer or silica. The water-soluble QDs were compared with regard to their bioconjugation with monoclonal antibody (mAb) and were tested on a LFIA. Silica-coated QDs that contained epoxy groups were most promising. Therefore, green, orange, and red epoxy-functionalized silica-coated QDs were conjugated with anti-ZEN, anti-DON, and anti-T2 mAb, respectively. The LFIA was developed in accordance with the European Commission legal limits with cutoff limits of 1000, 80, and 80 μg/kg for deoxynivalenol, zearalenone, and T2/HT2-toxin, respectively. The LFIA gave a fast result (15 min) with a low false-negative rate (<5%), and the results were easy to interpret without any sophisticated equipment.
ACS Nano | 2016
Willem Walravens; Jonathan De Roo; Emile Drijvers; Stephanie ten Brinck; Eduardo Solano; Jolien Dendooven; Christophe Detavernier; Ivan Infante; Zeger Hens
Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.
Talanta | 2016
Natalia V. Beloglazova; Astrid Foubert; Anna Viktorovna Gordienko; Mickael D. Tessier; Tangi Aubert; Emile Drijvers; Irina Yu. Goryacheva; Zeger Hens; Sarah De Saeger
A sensitive tool for simultaneous quantitative determination of three analytes in one single well of a microtiter plate is shown for the first time. The developed technique is based on use of colloidal quantum dot enrobed into a silica shell (QD@SiO2) derivatives as a highly responsive label. Silica-coated quantum dots were prepared and subsequently modified via the co-hydrolysis with tetraethylorthosilicate (TEOS) and various organosilane reagents. Different surface modification schemes were compared in terms of applicability of the obtained particles for the multiplex immunoassay, e.g. stability and simplicity of their conjugation with biomolecules. As model system a multiplex immunosorbent assay for screening of three mycotoxins (deoxynivalenol, zearalenone and aflatoxin B1) in cereal-based products was realized via a co-immobilization of three different specific antibodies (anti- deoxynivalenol, anti-zearalenone and anti-aflatoxin B1) in one single well of a microtiter plate. Mycotoxins were simultaneously determined by labelling their conjugates with QD@SiO2 emitting in different parts of the visible spectrum. The limits of detection for the simultaneous determination were 6.1 and 5.3, 5.4 and 4.1, and 2.6 and 1.9µgkg(-1) for deoxynivalenol, zearalenone and aflatoxin B1 in maize and wheat, respectively. As confirmatory method, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used.
Journal of the American Chemical Society | 2017
Kim De Nolf; Salvatore M. Cosseddu; Jacek J. Jasieniak; Emile Drijvers; José Martins; Ivan Infante; Zeger Hens
In this work, we present a combined experimental and theoretical analysis of two-component ligand shells passivating CdSe quantum dots. Using nuclear magnetic resonance spectroscopy, we first show that exposing oleate-capped quantum dots to primary carboxylic acids results in a one-for-one exchange that preserves the overall ligand surface concentration. Exposure to straight-chain acids leads to a binary ligand shell that behaves as an ideal mixture and that has a composition matching the overall acid composition of the dispersion. In the case of branched-chain acids, the exchange is restricted to about 25% of the original ligands. Based on molecular dynamics simulations, we argue that this behavior reflects the more favorable packing of oleates compared to branched carboxylates on the (100) facets of CdSe quantum dots.
Journal of Chemical Physics | 2017
Amelie Biermann; Tangi Aubert; Philipp Baumeister; Emile Drijvers; Zeger Hens; Janina Maultzsch
We investigate the encapsulation of CdSe/CdS quantum dots (QDs) in a silica shell by in situ Raman spectroscopy and find a distinct shift of the CdS Raman signal during the first hours of the synthesis. This shift does not depend on the final silica shell thickness but on the properties of the initial core-shell QD. We find a correlation between the Raman shift rate and the speed of the silica formation and attribute this to the changing configuration of the outermost layers of the QD shell, where an interface to the newly formed silica is created. This dependence of Raman shift rate on the speed of silica formation process will give rise to many possible studies concerning the growth mechanism in the water-in-oil microemulsion, rendering in situ Raman a valuable instrument in monitoring this type of reaction.
Optics Express | 2018
Suzanne Bisschop; Pieter Geiregat; Lukas Elsinger; Emile Drijvers; Dries Van Thourhout; Zeger Hens; Edouard Brainis
We demonstrate the fabrication and characterization of on-chip vertically-emitting SiNx/Au nanopatch cavities containing a monolayer of colloidal quantum dots. The fabrication process is based on electron-beam lithography and deterministically positions both the cavity and the emitters within the cavity with an accuracy of 10 nm. The Purcell enhancement of the spontaneous emission of the quantum dots is studied theoretically and experimentally. The fabrication technique makes it possible to pattern the quantum dot monolayer such that the quantum dots only occupy the center of the nanopatch cavity where a Purcell factor up to 7 can be reached. The work paves the way towards scalable fabrication of bright and directive single-photon sources.
Journal of Physical Chemistry Letters | 2018
Jorick Maes; Lieve Balcaen; Emile Drijvers; Qiang Zhao; Jonathan De Roo; André Vantomme; Frank Vanhaecke; Pieter Geiregat; Zeger Hens
Inductively coupled plasma mass spectrometry (ICP-MS) was combined with UV-vis absorption spectroscopy and transmission electron microscopy to determine the size, composition, and intrinsic absorption coefficient μi of 4 to 11 nm sized colloidal CsPbBr3 nanocrystals (NCs). The ICP-MS measurements demonstrate the nonstoichiometric nature of the NCs, with a systematic excess of lead for all samples studied. Rutherford backscattering measurements indicate that this enrichment in lead concurs with a relative increase in the bromide content. At high photon energies, μi is independent of the nanocrystal size. This allows the nanocrystal concentration in CsPbBr3 nanocolloids to be readily obtained by a combination of absorption spectroscopy and the CsPbBr3 sizing curve.
ACS Nano | 2018
Pieter Geiregat; Jorick Maes; Kai Chen; Emile Drijvers; Jonathan De Roo; Justin M. Hodgkiss; Zeger Hens
Following the introduction of perovskites for photovoltaic solar energy conversion, the use of these materials as a general purpose optoelectronic material for displays, lighting, and lasing has been explored. However, while reports on stimulated emission and lasing by perovskites show great promise, a comprehensive quantification of their optical gain characteristics is lacking. Here, we measure gain coefficients, clarify the gain mechanism, and explore the gain dynamics of colloidal CsPbBr3 nanocrystals by deploying a unique combination of broadband transient absorption and ultrafast fluorescence spectroscopy. Opposite from current literature, we show that optical gain in such nanocrystals is supported by stimulated emission from free carriers, and not from excitons or biexcitons. Importantly, we demonstrate that the concomitant gain coefficients and thresholds agree with literature results reported for perovksite thin films. Finally, we show that, even in the case of fully inorganic lead halide perovskites, a cooling bottleneck hampers the development of net stimulated emission at high excitation density. Based on these results, we propose that bulk-like colloidal nanocrystals in general offer a unique testbed to quantify optical gain of novel photonic materials and in particular for lead halide perovskites.
Chemistry of Materials | 2016
Emile Drijvers; Jonathan De Roo; Pieter Geiregat; Krisztina Fehér; Zeger Hens; Tangi Aubert
Chemistry of Materials | 2018
Emile Drijvers; Jonathan De Roo; José Martins; Ivan Infante; Zeger Hens