Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan De Roo is active.

Publication


Featured researches published by Jonathan De Roo.


ACS Nano | 2016

Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

Jonathan De Roo; Maria Ibáñez; Pieter Geiregat; Georgian Nedelcu; Willem Walravens; Jorick Maes; José Martins; Isabel Van Driessche; Maksym V. Kovalenko; Zeger Hens

Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.


Journal of the American Chemical Society | 2014

Unravelling the Surface Chemistry of Metal Oxide Nanocrystals, the Role of Acids and Bases

Jonathan De Roo; Freya Van den Broeck; Katrien De Keukeleere; José Martins; Isabel Van Driessche; Zeger Hens

We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.


Journal of the American Chemical Society | 2016

Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.

Mickael D. Tessier; Kim De Nolf; Dorian Dupont; Davy Sinnaeve; Jonathan De Roo; Zeger Hens

Aminophosphines have recently emerged as economical, easy-to-implement precursors for making InP nanocrystals, which stand out as alternative Cd-free quantum dots for optoelectronic applications. Here, we present a complete investigation of the chemical reactions leading to InP formation starting from InCl3 and tris(dialkylamino)phosphines. Using nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction, we demonstrate that injection of the aminophosphine in the reaction mixture is followed by a transamination with oleylamine, the solvent of the reaction. In addition, mass spectrometry and NMR indicate that the formation of InP concurs with that of tetra(oleylamino)phosphonium chloride. The chemical yield of the InP formation agrees with this 4 P(+III) → P(-III) + 3 P(+V) disproportionation reaction occurring, since full conversion of the In precursor was only attained for a 4:1 P/In ratio. Hence it underlines the double role of the aminophosphine as both precursor and reducing agent. These new insights will guide further optimization of high quality InP quantum dots and might lead to the extension of synthetic protocols toward other pnictide nanocrystals.


Angewandte Chemie | 2015

Carboxylic‐Acid‐Passivated Metal Oxide Nanocrystals: Ligand Exchange Characteristics of a New Binding Motif

Jonathan De Roo; Yolanda Justo; Katrien De Keukeleere; Freya Van den Broeck; José Martins; Isabel Van Driessche; Zeger Hens

Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using (1) H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self-adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X-type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X-type ligands yielding a combined X2 binding motif that allows for self-adsorption and exchange for L-type ligands.


Inorganic Chemistry | 2015

Fast and Tunable Synthesis of ZrO2 Nanocrystals: Mechanistic Insights into Precursor Dependence

Katrien De Keukeleere; Jonathan De Roo; Petra Lommens; José Martins; Pascal Van Der Voort; Isabel Van Driessche

In this work, ZrO2 nanocrystals (NCs) are synthesized via a solvothermal treatment in benzyl alcohol, which is an established method for the synthesis of many metal oxide nanocrystals. We found that the use of microwave heating allows for a reduction in reaction time from 2 days in the autoclave to merely 4 h in the microwave. Furthermore, we were able to tune the crystallographic phase from pure cubic to pure monoclinic zirconia by changing the reaction mechanism through the use of a different zirconium precursor. Via GC-MS measurements, we found that the release of a strong acid during synthesis controls the key mechanism behind the control over crystal phase formation. The as-synthesized ZrO2 NCs (cubic or monoclinic) are small in size (3-10 nm), yet aggregated. However, aggregate-free NCs are generated through a surface-functionalization with carboxylic acid ligands, providing stabilization in apolar solvents via steric hindrance. Solution (1)H NMR was used to study the details of this post-modification step and the surface chemistry of the resulting aggregate-free NCs. This led to the conclusion that not only a different crystal structure but also a different surface chemistry is obtained, depending on the precursor composition.


ACS Nano | 2016

Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

Willem Walravens; Jonathan De Roo; Emile Drijvers; Stephanie ten Brinck; Eduardo Solano; Jolien Dendooven; Christophe Detavernier; Ivan Infante; Zeger Hens

Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.


Journal of Materials Chemistry | 2017

Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators

Yu Liu; Gregorio García; Silvia Ortega; Doris Cadavid; P. Palacios; Jinyu Lu; Maria Ibáñez; Lili Xi; Jonathan De Roo; Antonio M. López; Sara Martí-Sánchez; Ignasi Cabezas; Maria de la Mata; Zhishan Luo; Chaochao Dun; Oleksandr Anatoliiovych Dobrozhan; David L. Carroll; Wenqing Zhang; José Martins; Maksym V. Kovalenko; Jordi Arbiol; German Noriega; Jiming Song; P. Wahnón; Andreu Cabot

Copper-based chalcogenides that comprise abundant, low-cost, and environmental friendly elements are excellent materials for a number of energy conversion applications, including photovoltaics, photocatalysis, and thermoelectrics (TE). In such applications, the use of solution-processed nanocrystals (NCs) to produce thin films or bulk nanomaterials has associated several potential advantages, such as high material yield and throughput, and composition control with unmatched spatial resolution and cost. Here we report on the production of Cu3SbSe4 (CASe) NCs with tuned amounts of Sn and Bi dopants. After proper ligand removal, as monitored by nuclear magnetic resonance and infrared spectroscopy, these NCs were used to produce dense CASe bulk nanomaterials for solid state TE energy conversion. By adjusting the amount of extrinsic dopants, dimensionless TE figures of merit (ZT) up to 1.26 at 673 K were reached. Such high ZT values are related to an optimized carrier concentration by Sn doping, a minimized lattice thermal conductivity due to efficient phonon scattering at point defects and grain boundaries, and to an increase of the Seebeck coefficient obtained by a modification of the electronic band structure with Bi doping. Nanomaterials were further employed to fabricate ring-shaped TE generators to be coupled to hot pipes, which provided 20 mV and 1 mW per TE element when exposed to a 160 °C temperature gradient. The simple design and good thermal contact associated with the ring geometry and the potential low cost of the material solution processing may allow the fabrication of TE generators with short payback times.


Langmuir | 2016

Amino Acid-Based Stabilization of Oxide Nanocrystals in Polar Media: From Insight in Ligand Exchange to Solution 1H NMR Probing of Short-Chained Adsorbates

Jonathan De Roo; Sofie Coucke; Hannes Rijckaert; Katrien De Keukeleere; Davy Sinnaeve; Zeger Hens; José Martins; Isabel Van Driessche

Ligand exchange is a crucial step between nanocrystal synthesis and nanocrystal application. Although colloidal stability and ligand exchange in nonpolar media are readily established, the exchange of native, hydrophobic ligands with polar ligands is less systematic. In this paper, we present a versatile ligand exchange strategy for the phase transfer of carboxylic acid capped HfO2 and ZrO2 nanocrystals to various polar solvents, based on small amino acids as the incoming ligand. To gain insight in the fundamental mechanism of the exchange, we study this system with a combination of FTIR, zeta potential measurements, and solution (1)H NMR techniques. The detection of surface-associated, small ligands with solution NMR proves challenging in this respect. Tightly bound amino acids are undetectable, but their existence can be proven through displacement with other ligands in titration experiments. Alternatively, we find that methyl moieties belonging to bound species can circumvent these limitations because of their more favorable relaxation properties as a result of internal mobility. As such, our results are not limited to amino acids but to any short-chained ligand and will therefore facilitate the rigorous investigation and understanding of various ligand exchange processes.


Journal of Materials Chemistry C | 2016

Colloidal AgSbSe2 nanocrystals: surface analysis, electronic doping and processing into thermoelectric nanomaterials

Yu Liu; Doris Cadavid; Maria Ibáñez; Jonathan De Roo; Silvia Ortega; Oleksandr Anatoliiovych Dobrozhan; Maksym V. Kovalenko; Andreu Cabot

We present a high-yield and scalable colloidal synthesis to produce monodisperse AgSbSe2 nanocrystals (NCs). Using nuclear magnetic resonance (NMR) spectroscopy, we characterized the NC surface chemistry and demonstrate the presence of surfactants in dynamic exchange, which controls the NC growth mechanism. In addition, these NCs were electronically doped by introducing small amounts of bismuth. To demonstrate the technological potential of such processed material, after ligand removal by means of NaNH2, AgSbSe2 NCs were used as building blocks to produce thermoelectric (TE) nanomaterials. A preliminary optimization of the doping concentration resulted in a thermoelectric figure of merit (ZT) of 1.1 at 640 K, which is comparable to the best ZT values obtained with a Pb- and Te-free material in this middle temperature range, with the additional advantage of the high versatility and low cost associated with solution processing technologies.


ACS Applied Materials & Interfaces | 2018

How Ligands Affect Resistive Switching in Solution-Processed HfO2 Nanoparticle Assemblies

Jiaying Wang; Satyan Choudhary; Jonathan De Roo; Katrien De Keukeleere; Isabel Van Driessche; Alfred J. Crosby; Stephen S. Nonnenmann

Advancement of resistive random access memory (ReRAM) requires fully understanding the various complex, defect-mediated transport mechanisms to further improve performance. Although thin-film oxide materials have been extensively studied, the switching properties of nanoparticle assemblies remain underexplored due to difficulties in fabricating ordered structures. Here, we employ a simple flow coating method for the facile deposition of highly ordered HfO2 nanoparticle nanoribbon assemblies. The resistive switching character of nanoribbons was determined to correlate directly with the organic capping layer length of their constituting HfO2 nanoparticles, using oleic acid, dodecanoic acid, and undecenoic acid as model nanoparticle ligands. Through a systematic comparison of the forming process, operating set/reset voltages, and resistance states, we demonstrate a tunable resistive switching response by varying the ligand type, thus providing a base correlation for solution-processed ReRAM device fabrication.

Collaboration


Dive into the Jonathan De Roo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge