Emilia E. Savage
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emilia E. Savage.
Molecular Pharmacology | 2012
Denise Wootten; Emilia E. Savage; Celine Valant; Lauren T. May; Kyle W. Sloop; James Ficorilli; Aaron D. Showalter; Francis S. Willard; Arthur Christopoulos; Patrick M. Sexton
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a key drug target class. Recently, allosteric drugs that can cobind with and modulate the activity of the endogenous ligand(s) for the receptor have become a major focus of the pharmaceutical and biotechnology industry for the development of novel GPCR therapeutic agents. This class of drugs has distinct properties compared with drugs targeting the endogenous (orthosteric) ligand-binding site that include the ability to sculpt cellular signaling and to respond differently in the presence of discrete orthosteric ligands, a behavior termed “probe dependence.” Here, using cell signaling assays combined with ex vivo and in vivo studies of insulin secretion, we demonstrate that allosteric ligands can cause marked potentiation of previously “inert” metabolic products of neurotransmitters and peptide hormones, a novel consequence of the phenomenon of probe dependence. Indeed, at the muscarinic M2 receptor and glucagon-like peptide 1 (GLP-1) receptor, allosteric potentiation of the metabolites, choline and GLP-1(9–36)NH2, respectively, was ∼100-fold and up to 200-fold greater than that seen with the physiological signaling molecules acetylcholine and GLP-1(7–36)NH2. Modulation of GLP-1(9–36)NH2 was also demonstrated in ex vivo and in vivo assays of insulin secretion. This work opens up new avenues for allosteric drug discovery by directly targeting modulation of metabolites, but it also identifies a behavior that could contribute to unexpected clinical outcomes if interaction of allosteric drugs with metabolites is not part of their preclinical assessment.
Molecular Pharmacology | 2012
Francis S. Willard; Denise Wootten; Aaron D. Showalter; Emilia E. Savage; James Ficorilli; Thomas B. Farb; Krister Bokvist; Jorge Alsina-Fernandez; Sebastian Furness; Arthur Christopoulos; Patrick M. Sexton; Kyle W. Sloop
Identifying novel mechanisms to enhance glucagon-like peptide-1 (GLP-1) receptor signaling may enable nascent medicinal chemistry strategies with the aim of developing new orally available therapeutic agents for the treatment of type 2 diabetes mellitus. Therefore, we tested the hypothesis that selectively modulating the low-affinity GLP-1 receptor agonist, oxyntomodulin, would improve the insulin secretory properties of this naturally occurring hormone to provide a rationale for pursuing an unexplored therapeutic approach. Signal transduction and competition binding studies were used to investigate oxyntomodulin activity on the GLP-1 receptor in the presence of the small molecule GLP-1 receptor modulator, 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP). In vivo, the intravenous glucose tolerance test characterized oxyntomodulin-induced insulin secretion in animals administered the small molecule. BETP increased oxyntomodulin binding affinity for the GLP-1 receptor and enhanced oxyntomodulin-mediated GLP-1 receptor signaling as measured by activation of the α subunit of heterotrimeric G protein and cAMP accumulation. In addition, oxyntomodulin-induced insulin secretion was enhanced in the presence of the compound. BETP was pharmacologically characterized to induce biased signaling by oxyntomodulin. These studies demonstrate that small molecules targeting the GLP-1 receptor can increase binding and receptor activation of the endogenous peptide oxyntomodulin. The biased signaling engendered by BETP suggests that GLP-1 receptor mobilization of cAMP is the critical insulinotropic signaling event. Because of the unique metabolic properties of oxyntomodulin, identifying molecules that enhance its activity should be pursued to assess the efficacy and safety of this novel mechanism.
Journal of Biological Chemistry | 2012
Cassandra Koole; Denise Wootten; John Simms; Emilia E. Savage; Laurence J. Miller; Arthur Christopoulos; Patrick M. Sexton
Background: The ECL2 of the GLP-1R is critical for GLP-1 peptide-mediated selective signaling. Results: Mutation of most ECL2 residues to alanine results in changes in binding and/or efficacy of oxyntomodulin and exendin-4 but not allosteric agonists. Conclusion: ECL2 of the GLP-1R has ligand-specific as well as general effects on peptide agonist-mediated receptor activation. Significance: This work provides insight into control of family B GPCR activation transition. The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical family B G protein-coupled receptor that exhibits physiologically important pleiotropic coupling and ligand-dependent signal bias. In our accompanying article (Koole, C., Wootten, D., Simms, J., Miller, L. J., Christopoulos, A., and Sexton, P. M. (2012) J. Biol. Chem. 287, 3642–3658), we demonstrate, through alanine-scanning mutagenesis, a key role for extracellular loop (ECL) 2 of the receptor in propagating activation transition mediated by GLP-1 peptides that occurs in a peptide- and pathway-dependent manner for cAMP formation, intracellular (Ca2+i) mobilization, and phosphorylation of extracellular signal-regulated kinases 1 and 2 (pERK1/2). In this study, we examine the effect of ECL2 mutations on the binding and signaling of the peptide mimetics, exendin-4 and oxyntomodulin, as well as small molecule allosteric agonist 6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline (compound 2). Lys-288, Cys-296, Trp-297, and Asn-300 were globally important for peptide signaling and also had critical roles in governing signal bias of the receptor. Peptide-specific effects on relative efficacy and signal bias were most commonly observed for residues 301–305, although R299A mutation also caused significantly different effects for individual peptides. Met-303 was more important for exendin-4 and oxyntomodulin action than those of GLP-1 peptides. Globally, ECL2 mutation was more detrimental to exendin-4-mediated Ca2+i release than GLP-1(7–36)-NH2, providing additional evidence for subtle differences in receptor activation by these two peptides. Unlike peptide activation of the GLP-1R, ECL2 mutations had only limited impact on compound 2 mediated cAMP and pERK responses, consistent with this ligand having a distinct mechanism for receptor activation. These data suggest a critical role of ECL2 of the GLP-1R in the activation transition of the receptor by peptide agonists.
Molecular Pharmacology | 2013
Denise Wootten; Emilia E. Savage; Francis S. Willard; Ana B. Bueno; Kyle W. Sloop; Arthur Christopoulos; Patrick M. Sexton
The glucagon-like peptide-1 receptor (GLP-1R) is a major therapeutic target for the treatment of type 2 diabetes due to its role in glucose homeostasis. Despite the availability of peptide-based GLP-1R drugs for treatment of this disease, there is great interest in developing small molecules that can be administered orally. The GLP-1R system is complex, with multiple endogenous and clinically used peptide ligands that exhibit different signaling biases at this receptor. This study revealed that small molecule ligands acting at this receptor are differentially biased to peptide ligands and also from each other with respect to the signaling pathways that they activate. Furthermore, allosteric small molecule ligands were also able to induce bias in signaling mediated by orthosteric ligands. This was dependent on both the orthosteric and allosteric ligand as no two allosteric-orthosteric ligand pairs could induce the same signaling profile. We highlight the need to profile compounds across multiple signaling pathways and in combination with multiple orthosteric ligands in systems such as the GLP-1R where more than one endogenous ligand exists. In the context of pleiotropical coupling of receptors and the interplay of multiple pathways leading to physiologic responses, profiling of small molecules in this manner may lead to a better understanding of the physiologic consequences of biased signaling at this receptor. This could enable the design and development of improved therapeutics that have the ability to fine-tune receptor signaling, leading to beneficial therapeutic outcomes while reducing side effect profiles.
Cell | 2016
Denise Wootten; Christopher A. Reynolds; Kevin J. Smith; Juan Carlos Mobarec; Cassandra Koole; Emilia E. Savage; Kavita Pabreja; John Simms; Rohan Sridhar; Sebastian G.B. Furness; Mengjie Liu; Philip E. Thompson; Laurence J. Miller; Arthur Christopoulos; Patrick M. Sexton
Summary Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.
Biochemical Society Transactions | 2013
Cassandra Koole; Kavita Pabreja; Emilia E. Savage; Denise Wootten; Sebastian G.B. Furness; Laurence J. Miller; Arthur Christopoulos; Patrick M. Sexton
Type 2 diabetes is a major global health problem and there is ongoing research for new treatments to manage the disease. The GLP-1R (glucagon-like peptide-1 receptor) controls the physiological response to the incretin peptide, GLP-1, and is currently a major target for the development of therapeutics owing to the broad range of potential beneficial effects in Type 2 diabetes. These include promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin sensitivity and promotion of weight loss. Despite this, our understanding of GLP-1R function is still limited, with the desired spectrum of GLP-1R-mediated signalling yet to be determined. We review the current understanding of GLP-1R function, in particular, highlighting recent contributions in the field on allosteric modulation, probe-dependence and ligand-directed signal bias and how these behaviours may influence future drug development.
Molecular Endocrinology | 2013
Cassandra Koole; Emilia E. Savage; Arthur Christopoulos; Laurence J. Miller; Patrick M. Sexton; Denise Wootten
The glucagon-like peptide-1 receptor (GLP-1R) controls the physiological responses to the incretin hormone glucagon-like peptide-1 and is a major therapeutic target for the treatment of type 2 diabetes, owing to the broad range of effects that are mediated upon its activation. These include the promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin action, and promotion of weight loss. Regulation of GLP-1R function is complex, with multiple endogenous and exogenous peptides that interact with the receptor that result in the activation of numerous downstream signaling cascades. The current understanding of GLP-1R signaling and regulation is limited, with the desired spectrum of signaling required for the ideal therapeutic outcome still to be determined. In addition, there are several single-nucleotide polymorphisms (used in this review as defining a natural change of single nucleotide in the receptor sequence; clinically, this is viewed as a single-nucleotide polymorphism only if the frequency of the mutation occurs in 1% or more of the population) distributed within the coding sequence of the receptor protein that have the potential to produce differential responses for distinct ligands. In this review, we discuss the current understanding of GLP-1R function, in particular highlighting recent advances in the field on ligand-directed signal bias, allosteric modulation, and probe dependence and the implications of these behaviors for drug discovery and development.
BioTechniques | 2013
Emilia E. Savage; Denise Wootten; Arthur Christopoulos; Patrick M. Sexton; Sebastian G.B. Furness
Transient protein-protein interactions form the basis of signal transduction pathways in addition to many other biological processes. One tool for studying these interactions is bioluminescence resonance energy transfer (BRET). This technique has been widely applied to study signaling pathways, in particular those initiated by G protein-coupled receptors (GPCRs). These assays are routinely performed using transient transfection, a technique that has limitations in terms of assay cost and variability, overexpression of interacting proteins, vector uptake limited to cycling cells, and non-homogenous expression across cells within the assay. To address these issues, we developed bicistronic vectors for use with Life Technologys Gateway and flpIN systems. These vectors provide a means to generate isogenic cell lines for comparison of interacting proteins. They have the advantage of stable, single copy, isogenic, homogeneous expression with low inter-assay variation. We demonstrate their utility by assessing ligand-induced interactions between GPCRs and arrestin proteins.
your Women Sugar Cool and for fantasia Skull Boots Canvas Flowers Girl's rHxr6q|shakethesnakelive.com | 2013
Cassandra Koole; Kavita Pabreja; Emilia E. Savage; Denise Wootten; Sebastian G.B. Furness; Laurence J. Miller; Arthur Christopoulos; Patrick M. Sexton
Type 2 diabetes is a major global health problem and there is ongoing research for new treatments to manage the disease. The GLP-1R (glucagon-like peptide-1 receptor) controls the physiological response to the incretin peptide, GLP-1, and is currently a major target for the development of therapeutics owing to the broad range of potential beneficial effects in Type 2 diabetes. These include promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin sensitivity and promotion of weight loss. Despite this, our understanding of GLP-1R function is still limited, with the desired spectrum of GLP-1R-mediated signalling yet to be determined. We review the current understanding of GLP-1R function, in particular, highlighting recent contributions in the field on allosteric modulation, probe-dependence and ligand-directed signal bias and how these behaviours may influence future drug development.
womens Chelsea Stitch Heavy Boot Wash VIGOSS Arrow Dark v1BTfdqqn|shakethesnakelive.com | 2013
Cassandra Koole; Kavita Pabreja; Emilia E. Savage; Denise Wootten; Sebastian G.B. Furness; Laurence J. Miller; Arthur Christopoulos; Patrick M. Sexton
Type 2 diabetes is a major global health problem and there is ongoing research for new treatments to manage the disease. The GLP-1R (glucagon-like peptide-1 receptor) controls the physiological response to the incretin peptide, GLP-1, and is currently a major target for the development of therapeutics owing to the broad range of potential beneficial effects in Type 2 diabetes. These include promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin sensitivity and promotion of weight loss. Despite this, our understanding of GLP-1R function is still limited, with the desired spectrum of GLP-1R-mediated signalling yet to be determined. We review the current understanding of GLP-1R function, in particular, highlighting recent contributions in the field on allosteric modulation, probe-dependence and ligand-directed signal bias and how these behaviours may influence future drug development.