Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilia Sanchez-Gomez is active.

Publication


Featured researches published by Emilia Sanchez-Gomez.


Climate Dynamics | 2013

The CNRM-CM5.1 global climate model: description and basic evaluation

Aurore Voldoire; Emilia Sanchez-Gomez; D. Salas y Melia; Christophe Cassou; Stéphane Sénési; Sophie Valcke; I. Beau; Antoinette Alias; Matthieu Chevallier; Michel Déqué; J. Deshayes; H. Douville; Elodie Fernandez; Gurvan Madec; Eric Maisonnave; Marie-Pierre Moine; Serge Planton; David Saint-Martin; Sophie Szopa; S. Tyteca; Ramdane Alkama; Sophie Belamari; Alain Braun; Laure Coquart; Fabrice Chauvin

A new version of the general circulation model CNRM-CM has been developed jointly by CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée) in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The purpose of the study is to describe its main features and to provide a preliminary assessment of its mean climatology. CNRM-CM5.1 includes the atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land surface scheme ISBA and the sea ice model GELATO (v5) coupled through the OASIS (v3) system. The main improvements since CMIP3 are the following. Horizontal resolution has been increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean (from 2° to 1°). The dynamical core of the atmospheric component has been revised. A new radiation scheme has been introduced and the treatments of tropospheric and stratospheric aerosols have been improved. Particular care has been devoted to ensure mass/water conservation in the atmospheric component. The land surface scheme ISBA has been externalised from the atmospheric model through the SURFEX platform and includes new developments such as a parameterization of sub-grid hydrology, a new freezing scheme and a new bulk parameterisation for ocean surface fluxes. The ocean model is based on the state-of-the-art version of NEMO, which has greatly progressed since the OPA8.0 version used in the CMIP3 version of CNRM-CM. Finally, the coupling between the different components through OASIS has also received a particular attention to avoid energy loss and spurious drifts. These developments generally lead to a more realistic representation of the mean recent climate and to a reduction of drifts in a preindustrial integration. The large-scale dynamics is generally improved both in the atmosphere and in the ocean, and the bias in mean surface temperature is clearly reduced. However, some flaws remain such as significant precipitation and radiative biases in many regions, or a pronounced drift in three dimensional salinity.


Journal of Climate | 2009

Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s

Tianjun Zhou; Rucong Yu; Jie Zhang; Helge Drange; Christophe Cassou; Clara Deser; Daniel L. R. Hodson; Emilia Sanchez-Gomez; Jian Li; Noel Keenlyside; Xiaoge Xin; Yuko Okumura

The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the inter-decadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmospheres response to the observed Indian Ocean-western Pacific (IWP) warming. Coordinated by a European Unions Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.


The Climate of the Mediterranean Region | 2012

The Climate of the Mediterranean Region in Future Climate Projections

Serge Planton; Piero Lionello; Artole Vincenzo; Rolland Aznar; Adriana Carrillo; Jeanne Colin; Letizia Congedi; Clotilde Dubois; Alberto Elizalde; Silvio Gualdi; Elke Hertig; Jucundus Jacobeit; Gabriel Jordá; Laurent Li; Annarita Mariotti; Claudio Piani; Paolo Michele Ruti; Emilia Sanchez-Gomez; Gianmaria Sannino; Florence Sevault; Samuel Somot; Michael N. Tsimplis

Future climate change over the Mediterranean area is investigated by means of climate model simulations covering the twenty-first century that take into account different anthropogenic greenhouse-gas-emission scenarios. This chapter first gives some new insights on these projections coming from the use of new methods, including the coupling at the regional scale of the atmospheric component to a Mediterranean Sea component. A synthesis of the expected changes of key aspects of the Mediterranean regional climate, obtained with a wide range of models and downscaling methods, is then presented. This includes an overview of not only expected changes in the mean climate and climate extremes but also possible changes in Mediterranean Sea temperature, salinity, circulation, water and heat budgets, and sea level. The chapter ends with some advanced results on the way to deal with uncertainties in climate projections and some discussion on the confidence that we can attribute to these projections.


Climate Dynamics | 2016

Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

Marie Piazza; Laurent Terray; Julien Boé; Eric Maisonnave; Emilia Sanchez-Gomez

A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air–sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.


Climate Dynamics | 2017

Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

Thomas Oudar; Emilia Sanchez-Gomez; Fabrice Chauvin; Julien Cattiaux; Laurent Terray; Christophe Cassou

The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.


Climatic Change | 2014

Projected 21st century snowfall changes over the French Alps and related uncertainties

Marie Piazza; Julien Boé; Laurent Terray; Christian Pagé; Emilia Sanchez-Gomez; Michel Déqué

Snowfall changes in mountain areas in response to anthropogenic forcing could have widespread hydrological, ecological and economic impacts. In this paper, the robustness of snowfall changes over the French Alps projected during the 21st century and the associated uncertainties are studied. In particular, the role of temperature changes on snowfall changes is investigated. Those issues are tackled through the analysis of the results of a very large ensemble of high-resolution regional climate projections, obtained either through dynamical or statistical downscaling. We find that, at the beginning and at the end of the cold season extending from November to March (included), temperature change is an important source of spread in snowfall changes. However, no link is found between temperature and snowfall changes in January and February. At the beginning and at the end of the cold season, the rate of change in snowfall per Kelvin does not depend much on the bias correction step, the period or the greenhouse gas scenario but mostly on the downscaling method and the climate models, the latter uncertainty source being dominant.


Geophysical Research Letters | 2008

Intra‐seasonal atmospheric variability and extreme precipitation events in the European‐Mediterranean region

Emilia Sanchez-Gomez; Laurent Terray; B. Joly

[3] In this work, we identify the weather regimes for the European-Mediterranean region, which has peculiar characteristics because of its location and morphology. The southern part of the region is mostly under the influence of the descending branch of the Hadley cell, while the northern part is more linked to the mid-latitude variability (the North Atlantic Oscillation (NAO) and other midlatitude patterns). Mediterranean climate presents a strong seasonal and land-sea contrast, and it is often the theatre of climate extreme episodes, as heat waves and heavy precipitation. In particular, in autumn, western Europe is regularly affected by extreme precipitation events (EPE), that produce important societal damages [Nuissier et al., 2008]. [4] The second objective of this work is to assess whether European-Mediterranean weather regimes can be related to the phases of some intra-seasonal atmospheric oscillation. Previous works [Plaut and Vautard, 1994;Kondrashov et al., 2004] have used the Multi Channel Singular Spectrum Analysis (MSSA) to identify low frequency atmospheric oscillations connected to Northern Hemisphere weather regimes. We apply the MSSA method to search for intraseasonal oscillations over the European-Mediterranean sector. We examine the relationships between the oscillation phases and weather regimes. This study can help to understand some aspects of the low frequency atmospheric dynamics on the Mediterranean region, as the transitions between weather regimes. We also examine the links between the phases of the European-Mediterranean intraseasonal oscillation and the occurrence of EPE at local scale over two selected regions in the Mediterranean basin. [5] The outline of this paper is as follows: Data are presented and a brief review of the statistical methods is given in section two, the results are summarized in section three and discussed in section four.


Climate Dynamics | 2017

Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate

Javier García-Serrano; Claude Frankignoul; Martin P. King; Alberto Arribas; Yongqi Gao; V. Guemas; Daniela Matei; Rym Msadek; Wonsun Park; Emilia Sanchez-Gomez

A set of ensemble integrations from the Coupled Model Intercomparison Project phase 5, with historical forcing plus RCP4.5 scenario, are used to explore if state-of-the-art climate models are able to simulate previously reported linkages between sea-ice concentration (SIC) anomalies over the eastern Arctic, namely in the Greenland–Barents–Kara Seas, and lagged atmospheric circulation that projects on the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO). The study is focused on variability around the long-term trends, so that all anomalies are detrended prior to analysis; the period of study is 1979–2013. The model linkages are detected by applying maximum covariance analysis. As also found in observational data, all the models considered here show a statistically significant link with sea-ice reduction over the eastern Arctic followed by a negative NAO/AO-like pattern. If the simulated relationship is found at a lag of one month, the results suggest that a stratospheric pathway could be at play as the driving mechanism; in observations this is preferentially shown for SIC in November. The interference of a wave-like anomaly over Eurasia, accompanying SIC changes, with the climatological wave pattern appears to be key in setting the mediating role of the stratosphere. On the other hand, if the simulated relationship is found at a lag of two months, the results suggest that tropospheric dynamics are dominant, presumably due to transient eddy feedback; in observations this is preferentially shown for SIC in December. The results shown here and previous evidence from atmosphere-only experiments emphasize that there could be a detectable influence of eastern Arctic SIC variability on mid-latitude atmospheric circulation anomalies. Even if the mechanisms are robust among the models, the timing of the simulated linkages strongly depends on the model and does not generally mimic the observational ones. This implies that the atmospheric sensitivity to sea-ice changes largely depends on the mean-flow and parameterizations, which could lead to misleading conclusions elsewhere if a multi-model ensemble-mean approach is adopted. It might also represent an important source of uncertainty in climate prediction and projection. Modelling efforts are hence further required to improve representation of the background atmospheric circulation and reduce biases, in order to attain more accurate covariability.


Climate Dynamics | 2018

Respective roles of remote and local wind stress forcings in the development of warm SST errors in the South-Eastern Tropical Atlantic in a coupled high-resolution model

Katerina Goubanova; Emilia Sanchez-Gomez; Claudia Frauen; Aurore Voldoire

Processes involved in the development of the warm sea surface temperature (SST) bias in the Tropical South-Eastern Atlantic (SETA) in a high resolution (HR) version of the CNRM-CM model are evaluated based on full-field initialized seasonal hindcasts starting at 1 February of each year for 2000–2009. Whereas the initial SST growth is likely associated with local atmospheric forcing, its further development is due to remote oceanic processes. A mixed layer heat budget analysis in SETA indicates a spurious warm horizontal advection observed as far as south of 25°S that appears at the beginning of March. It is associated with an erroneous oceanic mean state at the equator resulting from the mean equatorial westerly wind bias. A sensitivity experiment with corrected wind stress over the equatorial region suggests that the remote forcing explains about 57% of the SETA SST bias in March–May. Comparison with a lower resolution (LR) version of the model reveals that in general similar processes are responsible for the SST bias in both models. A strong reduction of the bias in the HR model is observed only over the near-coastal Southern Benguela region due to a better representation of atmospheric and oceanic processes controlling the coastal upwelling. Overall, the results of the inter-comparison of the SETA SST bias evolution in different sensitivity experiments performed in this study can be interpreted in terms of the relative contributions of (erroneous) warm horizontal advection, associated with equatorial forcing, and cold horizontal advection, associated with local offshore Ekman transport.


Climate Dynamics | 2018

Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation

Paul-Arthur Monerie; Thomas Oudar; Emilia Sanchez-Gomez

The impact of climate change on Sahel precipitation is uncertain and has to be widely documented. Recently, it has been shown that Arctic sea ice loss leverages the global warming effects worldwide, suggesting a potential impact of Arctic sea ice decline on tropical regions. However, defining the specific roles of increasing greenhouse gases (GHG) concentration and declining Arctic sea ice extent on Sahel climate is not straightforward since the former impacts the latter. We avoid this dependency by analysing idealized experiments performed with the CNRM-CM5 coupled model. Results show that the increase in GHG concentration explains most of the Sahel precipitation change. We found that the impact due to Arctic sea ice loss depends on the level of atmospheric GHG concentration. When the GHG concentration is relatively low (values representative of 1980s), then the impact is moderate over the Sahel. However, when the concentration in GHG is levelled up, then Arctic sea ice loss leads to increased Sahel precipitation. In this particular case the ocean-land meridional gradient of temperature strengthens, allowing a more intense monsoon circulation. We linked the non-linearity of Arctic sea ice decline impact with differences in temperature and sea level pressure changes over the North Atlantic Ocean. We argue that the impact of the Arctic sea ice loss will become more relevant with time, in the context of climate change.

Collaboration


Dive into the Emilia Sanchez-Gomez's collaboration.

Top Co-Authors

Avatar

Christophe Cassou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laurent Terray

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christian Pagé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Maisonnave

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julien Boé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marie Piazza

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noel Keenlyside

Bjerknes Centre for Climate Research

View shared research outputs
Top Co-Authors

Avatar

Tianjun Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Elodie Fernandez

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge