Emiliano Cló
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emiliano Cló.
ChemBioChem | 2007
Emiliano Cló; John W. Snyder; Peter R. Ogilby; Kurt V. Gothelf
Singlet molecular oxygen is a reactive oxygen species that plays an important role in a number of biological processes, both as a signalling agent and as an intermediate involved in oxidative degradation reactions. Singlet oxygen is commonly generated by the so‐called photosensitization process wherein a light‐absorbing molecule, the sensitizer, transfers its energy of excitation to ground‐state oxygen to make singlet oxygen. This process forms the basis of photodynamic therapy, for example, where light, a sensitizer, and oxygen are used to initiate cell death and ultimately destroy undesired tissue. Although the photosensitized production of singlet oxygen has been studied and used in biologically pertinent systems for years, the photoinitiated behaviour is often indiscriminate and difficult to control. In this Concept, we discuss new ideas and results in which spatial and temporal control of photosensitized singlet oxygen production can be implemented through the incorporation of the sensitizer into a conjugate system that selectively responds to certain triggers or stimuli.
Journal of Proteome Research | 2010
Ola Blixt; Emiliano Cló; Aaron S. Nudelman; Kasper K. Sørensen; Thomas M. Clausen; Hans H. Wandall; Philip O. Livingston; Henrik Clausen; Knud J. Jensen
Biomarker microarrays are becoming valuable tools for serological screening of disease-associated autoantibodies. Post-translational modifications (PTMs) such as glycosylation extend the range of protein function, and a variety of glycosylated proteins are known to be altered in disease progression. Here, we have developed a synthetic screening microarray platform for facile display of O-glycosylated peptides (O-PTMs). By introduction of a capping step during chemical solid-phase glycopeptide synthesis, selective enrichment of N-terminal glycopeptide end products was achieved on an amine-reactive hydrogel-coated microarray glass surface, allowing high-throughput display of large numbers of glycopeptides. Utilizing a repertoire of recombinant glycosyltransferases enabled further diversification of the array libraries in situ and display of a new level of potential biomarker candidates for serological screening. As proof-of-concept, we have demonstrated that MUC1 glycopeptides could be assembled and used to detect autoantibodies in vaccine-induced disease-free breast cancer patients and in patients with confirmed disease at time of diagnosis.
Journal of Organic Chemistry | 2010
Mikkel B. Thygesen; Henrik K. Munch; Jørgen Sauer; Emiliano Cló; Malene R. Jørgensen; Ole Hindsgaul; Knud J. Jensen
Chemoselective formation of glycoconjugates from unprotected glycans is needed to further develop chemical biology involving glycans. Carbohydrate oxime formation is often slow, and organocatalysis by anilines would be highly promising. Here, we present that carbohydrate oxime formation can be catalyzed with up to 20-fold increases in overall reaction rate at 100 mM aniline. Application of this methodology provided access to complex glycoconjugates.
ChemMedChem | 2007
Mikkel F. Jacobsen; Emiliano Cló; Andriy Mokhir; Kurt V. Gothelf
The development of more selective chemotherapeutic agents for benign treatments of malicious diseases is highly desirable. In recent years model systems for the release of small molecule drugs from nucleic acid conjugates by templated chemical or photochemical reactions have been designed. Common for these systems is that the stoichiometric or catalytic drug release is controlled by the highly selective hybridization between complementary strands of nucleic acids. Herein, the concepts of the new field of nucleic acid templated release reactions are outlined.
Journal of Biological Chemistry | 2011
Johannes W. Pedersen; Eric P. Bennett; Katrine T. Schjoldager; Morten Meldal; Andreas P. Holmér; Ola Blixt; Emiliano Cló; Steven B. Levery; Henrik Clausen; Hans H. Wandall
UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.
Glycobiology | 2012
Ola Blixt; Olga Lavrova; Dmitriy V Mazurov; Emiliano Cló; Stjepan Krešimir Kračun; Nicolai V. Bovin; Alexander Filatov
CD175 or Tn antigen is a carbohydrate moiety of N-acetylgalactosamine (GalNAc)α1-O- linked to the residue of amino acid serine or threonine in a polypeptide chain. Despite the chemical simplicity of the Tn antigen, its antigenic structure is considered to be complex and the clear determinants of Tn antigenicity remain poorly understood. As a consequence, a broad variety of anti-Tn monoclonal antibodies (mAbs) have been generated. To further investigate the nature and complexity of the Tn antigen, we generated seven different anti-Tn mAbs of IgM and IgG classes raised against human Jurkat T cells, which are Tn-positive due to the low activity of T-synthase and mutation in specific chaperone Cosmc. The binding analysis of anti-Tn mAbs with the array of synthetic saccharides, glycopeptides and O-glycoproteins revealed unexpected differences in specificities of anti-Tn mAbs. IgM mAbs bound the terminal GalNAc residue of the Tn antigen irrespective of the peptide context or with low selectivity to the glycoproteins. In contrast, IgG mAbs recognized the Tn antigen in the context of a specific peptide motif. Particularly, JA3 mAb reacted to the GSPP or GSPAPP, and JA5 mAb recognized specifically the GSP motif (glycosylation sites are underlined). The major O-glycan carrier proteins CD43 and CD162 and isoforms of CD45 expressed on Jurkat cells were precipitated by anti-Tn mAbs with different affinities. In summary, our data suggest that Tn antigen-Ab binding capacity is determined by the peptide context of the Tn antigen, antigenic specificity of the Ab and class of the immunoglobulin. The newly generated anti-Tn IgG mAbs with the strong specificity to glycoprotein CD43 can be particularly interesting for the application in leukemia diagnostics and therapy.
Journal of Proteome Research | 2010
Stjepan Krešimir Kračun; Emiliano Cló; Henrik Clausen; Steven B. Levery; Knud J. Jensen; Ola Blixt
Identification of disease-specific biomarkers is important to address early diagnosis and management of disease. Aberrant post-translational modifications (PTM) of proteins such as O-glycosylations (O-PTMs) are emerging as triggers of autoantibodies that can serve as sensitive biomarkers. Here we have developed a random glycopeptide bead library screening platform for detection of autoantibodies and other binding proteins. Libraries were build on biocompatible PEGA beads including a safety-catch C-terminal amide linker (SCAL) that allowed mild cleavage conditions (I(2)/NaBH(4) and TFA) for release of glycopeptides and sequence determination by ESI-Orbitrap-MS(n). As proof-of-principle, tumor -specific glycopeptide reporter epitopes were built-in into the libraries and were detected by tumor-specific monoclonal antibodies and autoantibodies from cancer patients. Sequenced and identified glycopeptides were resynthesized at the preparative scale by automated parallel peptide synthesis and printed on microarrays for validation and broader analysis with larger sets of sera. We further showed that chemical synthesis of the monosaccharide O-glycopeptide library (Tn-glycoform) could be diversified to other tumor glycoforms by on-bead enzymatic glycosylation reactions with recombinant glycosyltransferases. Hence, we have developed a high-throughput flexible platform for rapid discovery of O-glycopeptide biomarkers and the method has applicability in other types of assays such as lectin/antibody/enzyme specificity studies as well as investigation of other PTMs.
Chemical Communications | 2009
Mikkel B. Thygesen; Kasper K. Sørensen; Emiliano Cló; Knud J. Jensen
Chemoselective oxime coupling was used for facile conjugation of unprotected, reducing glycans and glycopeptide aldehydes with core?shell gold nanoparticles carrying reactive aminooxy groups on the organic shell.
Journal of Virology | 2012
Emiliano Cló; Stjepan Krešimir Kračun; Aaron S. Nudelman; Knud J. Jensen; Jan-Åke Liljeqvist; Sigvard Olofsson; Tomas Bergström; Ola Blixt
ABSTRACT Viral envelope proteins mediate interactions with host cells, leading to internalization and intracellular propagation. Envelope proteins are glycosylated and are known to serve important functions in masking host immunity to viral glycoproteins. However, the viral infectious cycle in cells may also lead to aberrant glycosylation that may elicit immunity. Our knowledge of immunity to aberrant viral glycans and glycoproteins is limited, potentially due to technical limitations in identifying immunogenic glycans and glycopeptide epitopes. This work describes three different complementary methods for high-throughput screening and identification of potential immunodominant O-glycopeptide epitopes on viral envelope glycoproteins: (i) on-chip enzymatic glycosylation of scan peptides, (ii) chemical glycopeptide microarray synthesis, and (iii) a one-bead-one-compound random glycopeptide library. We used herpes simplex virus type 2 (HSV-2) as a model system and identified a simple O-glycopeptide pan-epitope, 501PPA(GalNAc)TAPG507, on the mature gG-2 glycoprotein that was broadly recognized by IgG antibodies in HSV-2-infected individuals but not in HSV-1-infected or noninfected individuals. Serum reactivity to the extended sialyl-T glycoform was tolerated, suggesting that self glycans can participate in immune responses. The methods presented provide new insight into viral immunity and new targets for immunodiagnostic and therapeutic measures.
Glycoconjugate Journal | 2013
Isotta D’Arrigo; Emiliano Cló; Tomas Bergström; Sigvard Olofsson; Ola Blixt
The Epstein-Barr virus (EBV) envelope glycoprotein 350/220 (gp350/220) is the most abundant molecule on the viral surface and it is responsible for the initial viral attachment to cell surface of the host. As many other viral envelope proteins, it is highly glycosylated, not least with O-linked glycans, most of which essential for EBV life cycle. EBV gp350/220 is also a primary target for neutralizing antibodies in the human hosts and a promising candidate for an EBV vaccine. Here we showed that recombinant GalNAc transferases can glycosylate scan peptides of the EBV gp350/220 envelope protein immobilized on microarray glass slides. We also identified serum IgG antibodies to a selection of peptides and O-glycopeptides, whereas sera from EBV-IgG negative individuals remained negative. We here describe novel glycopeptide epitopes present within immunodominant stretches of EBV gp350/220 and demonstrate a remarkable variability between individual samples with respect to their reactivity patterns to peptides and glycopeptides. The study provides additional insights into the complex B-cell response towards the EBV gp350/220 envelope protein, which may have implications for diagnostic and vaccine developments.