Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ola Blixt is active.

Publication


Featured researches published by Ola Blixt.


Science | 2006

Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus.

James Stevens; Ola Blixt; Terrence M. Tumpey; Jeffery K. Taubenberger; James C. Paulson; Ian A. Wilson

The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian α2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human α2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human α2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.


Nature Structural & Molecular Biology | 2004

Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR

Yuan Guo; Hadar Feinberg; Edward Conroy; Daniel Anthony Mitchell; Richard Alvarez; Ola Blixt; Maureen E. Taylor; William I. Weis; Kurt Drickamer

Both the dendritic cell receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR bind human immunodeficiency virus and enhance infection. However, biochemical and structural comparison of these receptors now reveals that they have very different physiological functions. By screening an extensive glycan array, we demonstrated that DC-SIGN and DC-SIGNR have distinct ligand-binding properties. Our structural and mutagenesis data explain how both receptors bind high-mannose oligosaccharides on enveloped viruses and why only DC-SIGN binds blood group antigens, including those present on microorganisms. DC-SIGN mediates endocytosis, trafficking as a recycling receptor and releasing ligand at endosomal pH, whereas DC-SIGNR does not release ligand at low pH or mediate endocytosis. Thus, whereas DC-SIGN has dual ligand-binding properties and functions both in adhesion and in endocytosis of pathogens, DC-SIGNR binds a restricted set of ligands and has only the properties of an adhesion receptor.


Journal of Biological Chemistry | 2008

Galectin-1, -2, and -3 Exhibit Differential Recognition of Sialylated Glycans and Blood Group Antigens

Sean R. Stowell; Connie M. Arthur; Padmaja Mehta; Kristen A. Slanina; Ola Blixt; Hakon Leffler; David F. Smith; Richard D. Cummings

Human galectins have functionally divergent roles, although most of the members of the galectin family bind weakly to the simple disaccharide lactose (Galβ1-4Glc). To assess the specificity of galectin-glycan interactions in more detail, we explored the binding of several important galectins (Gal-1, Gal-2, and Gal-3) using a dose-response approach toward a glycan microarray containing hundreds of structurally diverse glycans, and we compared these results to binding determinants on cells. All three galectins exhibited differences in glycan binding characteristics. On both the microarray and on cells, Gal-2 and Gal-3 exhibited higher binding than Gal-1 to fucose-containing A and B blood group antigens. Gal-2 exhibited significantly reduced binding to all sialylated glycans, whereas Gal-1 bound α2-3- but not α2-6-sialylated glycans, and Gal-3 bound to some glycans terminating in either α2-3- or α2-6-sialic acid. The effects of sialylation on Gal-1, Gal-2, and Gal-3 binding to cells also reflected differences in cellular sensitivity to Gal-1-, Gal-2-, and Gal-3-induced phosphatidylserine exposure. Each galectin exhibited higher binding for glycans with poly-N-acetyllactosamine (poly(LacNAc)) sequences (Galβ1-4GlcNAc)n when compared with N-acetyllactosamine (LacNAc) glycans (Galβ1-4GlcNAc). However, only Gal-3 bound internal LacNAc within poly(LacNAc). These results demonstrate that each of these galectins mechanistically differ in their binding to glycans on the microarrays and that these differences are reflected in the determinants required for cell binding and signaling. The specific glycan recognition by each galectin underscores the basis for differences in their biological activities.


Nature Reviews Microbiology | 2006

Glycan microarray technologies: tools to survey host specificity of influenza viruses

James Stevens; Ola Blixt; James C. Paulson; Ian A. Wilson

New technologies are urgently required for rapid surveillance of the current H5N1 avian influenza A outbreaks to gauge the potential for adaptation of the virus to the human population, a crucial step in the emergence of pandemic influenza virus strains. Owing to the species-specific nature of the interaction between the virus and host glycans, attention has recently focused on novel glycan array technologies that can rapidly assess virus receptor specificity and the potential emergence of human-adapted H5N1 viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility

Jessica A. Belser; Ola Blixt; Li-Mei Chen; Claudia Pappas; Taronna R. Maines; Neal Van Hoeven; Ruben O. Donis; Julia Busch; Ryan McBride; James C. Paulson; Jacqueline M. Katz; Terrence M. Tumpey

Avian H7 influenza viruses from both the Eurasian and North American lineage have caused outbreaks in poultry since 2002, with confirmed human infection occurring during outbreaks in The Netherlands, British Columbia, and the United Kingdom. The majority of H7 infections have resulted in self-limiting conjunctivitis, whereas probable human-to-human transmission has been rare. Here, we used glycan microarray technology to determine the receptor-binding preference of Eurasian and North American lineage H7 influenza viruses and their transmissibility in the ferret model. We found that highly pathogenic H7N7 viruses from The Netherlands in 2003 maintained the classic avian-binding preference for α2–3-linked sialic acids (SA) and are not readily transmissible in ferrets, as observed previously for highly pathogenic H5N1 viruses. However, H7N3 viruses isolated from Canada in 2004 and H7N2 viruses from the northeastern United States isolated in 2002–2003 possessed an HA with increased affinity toward α2–6-linked SA, the linkage type found prominently on human tracheal epithelial cells. We identified a low pathogenic H7N2 virus isolated from a man in New York in 2003, A/NY/107/03, which replicated efficiently in the upper respiratory tract of ferrets and was capable of transmission in this species by direct contact. These results indicate that H7 influenza viruses from the North American lineage have acquired sialic acid-binding properties that more closely resemble those of human influenza viruses and have the potential to spread to naïve animals.


Journal of Molecular Biology | 2008

Recent Avian H5N1 Viruses Exhibit Increased Propensity for Acquiring Human Receptor Specificity

James Stevens; Ola Blixt; Li-Mei Chen; Ruben O. Donis; James C. Paulson; Ian A. Wilson

Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human alpha2-6 sialosides and concomitant reduction in affinity for avian alpha2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.


Cancer Research | 2010

Cancer Biomarkers Defined by Autoantibody Signatures to Aberrant O-Glycopeptide Epitopes

Hans H. Wandall; Ola Blixt; Mads Agervig Tarp; Johannes W. Pedersen; Eric P. Bennett; Ulla Mandel; Govind Ragupathi; Phil O. Livingston; Michael A. Hollingsworth; Joyce Taylor-Papadimitriou; Joy Burchell; Henrik Clausen

Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evaluated whether autoantibodies generated to aberrant O-glycoforms of MUC1 might serve as sensitive diagnostic biomarkers for cancer. Using an antibody-based glycoprofiling ELISA assay, we documented that aberrant truncated glycoforms were not detected in sera of cancer patients. An O-glycopeptide microarray was developed that detected IgG antibodies to aberrant O-glycopeptide epitopes in patients vaccinated with a keyhole limpet hemocyanin-conjugated truncated MUC1 peptide. We detected cancer-associated IgG autoantibodies in sera from breast, ovarian, and prostate cancer patients against different aberrent O-glycopeptide epitopes derived from MUC1. These autoantibodies represent a previously unaddressed source of sensitive biomarkers for early detection of cancer. The methods we have developed for chemoenzymatic synthesis of O-glycopeptides on microarrays may allow for broader mining of the entire cancer O-glycopeptidome.


Angewandte Chemie | 2008

Biocompatible Carbon Nanotubes Generated by Functionalization with Glycodendrimers

Peng Wu; Xing Chen; Nancy Hu; Un Chong Tam; Ola Blixt; Alex Zettl; Carolyn R. Bertozzi

The structural, mechanical, electrical, and optical properties of single-walled carbon nanotubes (SWNTs) have stimulated considerable interest in their biological applications[1-3]. SWNTs have been employed for biosensing[4], imaging[5], intracellular delivery[6], and cancer cell targeting[7, 8]. However, expanded use of SWNTs in living systems will require strategies to diminish their cytotoxicity[9-12]. Thus, surface modifications that mitigate the toxicity of SWNTs while simultaneously enabling specific biological recognition are highly sought after[8,13-17].


Virology | 2012

In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity.

Li-Mei Chen; Ola Blixt; James Stevens; Aleksandr S. Lipatov; Charles T. Davis; Brian E. Collins; Nancy J. Cox; James C. Paulson; Ruben O. Donis

Acquisition of α2-6 sialoside receptor specificity by α2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding α2-6 sialosides, we identified four variant viruses with amino acid substitutions in the hemagglutinin (S227N, D187G, E190G, and Q196R) that revealed modestly increased α2-6 and minimally decreased α2-3 binding by glycan array analysis. However, a mutant virus combining Q196R with mutations from previous pandemic viruses (Q226L and G228S) revealed predominantly α2-6 binding. Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans.


Breast Cancer Research | 2011

Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis

Ola Blixt; Deanna Bueti; Brian Burford; Diane S. Allen; Sylvain Julien; Michael Hollingsworth; Alexander Gammerman; Ian S. Fentiman; Joyce Taylor-Papadimitriou; Joy Burchell

IntroductionDetection of serum biomarkers for early diagnosis of breast cancer remains an important goal. Changes in the structure of O-linked glycans occur in all breast cancers resulting in the expression of glycoproteins that are antigenically distinct. Indeed, the serum assay widely used for monitoring disease progression in breast cancer (CA15.3), detects a glycoprotein (MUC1), but elevated levels of the antigen cannot be detected in early stage patients. However, since the immune system acts to amplify the antigenic signal, antibodies can be detected in sera long before the antigen. We have exploited the change in O-glycosylation to measure autoantibody responses to cancer-associated glycoforms of MUC1 in sera from early stage breast cancer patients.MethodsWe used a microarray platform of 60mer MUC1 glycopeptides, to confirm the presence of autoantibodies to cancer associated glycoforms of MUC1 in a proportion of early breast cancer patients (54/198). Five positive sera were selected for detailed definition of the reactive epitopes using on chip glycosylation technology and a panel of glycopeptides based on a single MUC1 tandem repeat carrying specific glycans at specific sites. Based on these results, larger amounts of an extended repertoire of defined MUC1 glycopeptides were synthesised, printed on microarrays, and screened with sera from a large cohort of breast cancer patients (n = 395), patients with benign breast disease (n = 108) and healthy controls (n = 99). All sera were collected in the 1970s and 1980s and complete clinical follow-up of breast cancer patients is available.ResultsThe presence and level of autoantibodies was significantly higher in the sera from cancer patients compared with the controls, and a highly significant correlation with age was observed. High levels of a subset of autoantibodies to the core3MUC1 (GlcNAcβ1-3GalNAc-MUC1) and STnMUC1 (NeuAcα2,6GalNAc-MUC1) glycoforms were significantly associated with reduced incidence and increased time to metastasis.ConclusionsAutoantibodies to specific cancer associated glycoforms of MUC1 are found more frequently and at higher levels in early stage breast cancer patients than in women with benign breast disease or healthy women. Association of strong antibody response with reduced rate and delay in metastases suggests that autoantibodies can affect disease progression.

Collaboration


Dive into the Ola Blixt's collaboration.

Top Co-Authors

Avatar

James C. Paulson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Emiliano Cló

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

James Stevens

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Nicolai V. Bovin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Collins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nahid Razi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Knud J. Jensen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Thomas Norberg

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge