Emilie Allard-Vannier
François Rabelais University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emilie Allard-Vannier.
European Journal of Pharmaceutics and Biopharmaceutics | 2012
Emilie Allard-Vannier; S. Cohen-Jonathan; Juliette Gautier; Katel Hervé-Aubert; Emilie Munnier; Martin Soucé; P. Legras; Catherine Passirani; Igor Chourpa
The aim of this work was to elucidate the impact of polyethylene glycol (PEG) polymeric coating on the in vitro and in vivo stealthiness of magnetic nanocarriers loaded or not with the anticancer drug doxorubicin. The comparison was made between aqueous suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by either citrate ions (C-SPIONs) or PEG(5000) (P-SPIONs), the latter being loaded or not with doxorubicin via the formation of a DOX-Fe(2+) complex (DLP-SPIONs). After determination of their relevant physico-chemical properties (size and surface charge), nanoparticle (NP) stealthiness was studied in vitro (ability to activate the complement system and uptake by monocytes and macrophage-like cells) and in vivo in mice (blood half-life; t(1/2), and biodistribution in main clearance organs). These aspects were quantitatively assessed by atomic absorption spectrometry (AAS). Complement activation dramatically decreased for sterically stabilized P-SPIONs and DLP-SPIONs in comparison with C-SPIONs stabilized by charge repulsion. Monocyte and macrophage uptake was also largely reduced for pegylated formulations loaded or not with doxorubicin. The t(1/2) in blood for P-SPIONs was estimated to be 76 ± 6 min, with an elimination mainly directed to liver and spleen. Thanks to their small size (<80 nm) and a neutral hydrophilic polymer-extended surface, P-SPIONs exhibit prolonged blood circulation and thus potentially an increased level in tumor delivery suitable for magnetic drug targeting applications.
International Journal of Pharmaceutics | 2015
Emiliana Perillo; Emilie Allard-Vannier; Annarita Falanga; Paola Stiuso; Maria Vitiello; Massimiliano Galdiero; Stefania Galdiero; Igor Chourpa
The present work investigates in vitro the delivery of the anticancer drug mitoxantrone (MTX) to HeLa cancer cells by means of polyethylene glycol (PEG) liposomes functionalized with the novel cell penetrating peptide gH625. This hydrophobic peptide enhances the delivery of doxorubicin (Doxo) to the cytoplasm of cancer cells, while the mechanism of this enhancement has not yet been understood. Here, in order to get a better insight into the role of gH625 on the mechanism of liposome-mediated drug delivery, we treated HeLa cells with liposomes functionalized with gH625 and loaded with MTX; functionalized and not liposome were characterized in terms of their physico-chemical properties and drug release kinetics. To quantify the MTX uptake and to study the subcellular drug distribution and interaction, we took advantage of the intrinsic fluorescence of MTX and of the fluorescence-based techniques like fluorescence-activated cell sorting (FACS) and confocal spectral imaging (CSI). FACS data confirmed that gH625 increases the total intracellular MTX content. CSI data indicated that when liposomes are decorated with gH625 an enhanced staining of the internalized drug is observed mainly in hydrophobic regions of the cytoplasm, where the increased presence of an oxidative metabolite of the drug is observed. The cytotoxicity on HeLa cell line was higher for functionalized liposomes within 4-6h of treatment. To summarise, the MTX delivery with gH625-decorated nanoliposomes enhances the quantity of both the intracellular drug and of its oxidative metabolite and contributes to higher anticancer efficacy of the drug at the delay of 4-6h.
Journal of Colloid and Interface Science | 2017
Emiliana Perillo; Katel Hervé-Aubert; Emilie Allard-Vannier; Annarita Falanga; Stefania Galdiero; Igor Chourpa
We synthesized rationally designed multifunctional nanoparticles (NPs) composed of a superparamagnetic iron oxide nanoparticle (SPION) core, cyanine fluorescent dye emitting in far red, polyethylene glycol (PEG5000) coating, and the membranotropic peptide gH625, from the cell-penetrating peptides (CPP) family. The peptide sequence was enriched with an additional cysteine so it can be involved as a reactive moiety in a certain orientation- and sequence-specific coupling of the CPP to the PEG shell of the NPs. Our data indicate that the presence of approximately 23 peptide molecules per SPION coated with approximately 137 PEG chains minimally changes the overall NP characteristics. The final CPP-capped NP hydrodynamic diameter was 98nm, the polydispersity index was 0.192, and the zeta potential was 4.08mV. The in vitro evaluation, performed using an original technique fluorescence confocal spectral imaging, showed that after a short incubation duration (maximum 30min), SPIONs-PEG-CPP uptake was 3-fold higher than that for SPIONs-PEG. The CPP also drives the subcellular distribution of a higher NP fraction towards low polarity cytosolic locations. Therefore, the major cellular uptake mechanism for the peptide-conjugated NPs should be endocytosis. Enhancement/acceleration of this mechanism by gH625 appears promising because of potential applications of SPIONs-PEG-gH625 as a multifunctional nanoplatform for cancer theranosis involving magnetic resonance imaging, optical imaging in far red, drug delivery, and hyperthermia.
Analytical Chemistry | 2015
Ambre Carrouée; Emilie Allard-Vannier; Sandra Même; Frédéric Szeremeta; Jean-Claude Beloeil; Igor Chourpa
Novel magneto-plasmonic nanoprobes were designed for multimodal diagnosis of cancer by combination of magnetic resonance imaging (MRI), surface-enhanced resonance Raman scattering (SERRS), and fluorescence emission in the very near infrared (VNIR). A controlled electrostatic assembly of silver nanoparticles (AgNPs), superparamagnetic iron oxide nanoparticles (SPIONs), VNIR dye Nile Blue (NB), and biopolymer chitosan (Chi) was used to formulate the AgIONs-Chi nanoprobes. The formulation protocol did not involve organic solvents and was rapid and efficient as confirmed by magnetic sorting. The SERRS response of the nanoprobes was very intense and constant for days. It decreased linearly upon 1000-fold dilution and was still recognizable at 0.1 nM NB concentration. After 30 days of storage, the SERRS loss was less than 30% and the hydrodynamic size of the AgIONs-Chi in PBS remained below 200 nm. The gradual decrease of the ratio SERRS/fluorescence allowed one to monitor the release of the fluorescent molecule upon long-term nanoprobe dissociation. The AgIONs-Chi exhibited 2-fold higher MRI contrast than that of commercially available SPION suspensions. Finally, the nanoprobes were actively uptaken by HeLa cancer cells and ensured trimodal MRI-SERRS-fluorescence detection of 10 μL cell inclusions in cm-sized agarose gels used here as phantom models of microtumors. The above results show that the magneto-plasmonic AgIONs-Chi are promising substrates for SERRS analysis in solution and for multimodal imaging of cancer cells.
RSC Advances | 2016
Christophe Alric; Nicolas Aubrey; Emilie Allard-Vannier; Anne di Tommaso; Thibaut Blondy; Isabelle Dimier-Poisson; Igor Chourpa; Katel Hervé-Aubert
In the present study, we describe the synthesis and characterization of new generation of cancer-targeting magnetic nanoprobes: superparamagnetic iron oxide nanoparticles (SPIONs) coated with polyethylene glycol (PEG) shell functionalized with recombinant anti-HER2 single chain fragment variable (scFv) of Trastuzumab antibody. An anti-HER2 scFv with terminal cysteine (scFv 4D5-Cys) has been rationally engineered in order to favor its orientation- and site-directed covalent conjugation to the polymeric surface of PEGylated SPIONs. Optimization of scFv and nanoparticles production allowed to obtain well-characterized SPIONs-PEG–scFv nanoparticles carrying ∼7 fragments per nanoparticle, having a hydrodynamic diameter of ca. 86 nm and nearly neutral surface. The nanoprobes-scFv capability to recognize the HER2 protein has been confirmed by enzyme-linked immunosorbent assay (ELISA). Compared to non-targeted PEGylated SPIONs, the SPIONs–PEG–scFv nanoprobes showed an enhanced binding to HER2-overexpressing cells (SK-BR3) in vitro as it was shown by immunofluorescence. Finally, ICP-AES measurements shown that in 1 hour the uptake of SPIONs–PEG–scFv in HER2-overexpressing cells is 2.1 times greater than non-targeted PEGylated SPIONs. Therefore, both due to their physico-chemical characteristics and the immunotargeting of HER2-positive breast cancer cells, the SPIONs–PEG–scFv appear as promising nanoplatforms for future applications in theranostic treatment of cancers.
Colloids and Surfaces B: Biointerfaces | 2016
Hoang Truc Phuong Nguyen; Emilie Allard-Vannier; Cédric Gaillard; Imane Eddaoudi; Lynda Miloudi; Martin Soucé; Igor Chourpa; Emilie Munnier
Calcium alginate nanocarriers (CaANCs) were developed as a potential tool for delivery of hydrophobic active molecules such as pharmaceutical and cosmetic active ingredients. In this study, we focused on interactions between CaANCs and keratinocytes in culture and examined toxicity, internalization and drug release. Prior to cellular interactions, cryogenic transmission electron microscopy images showed that CaANCs appear as regular, spherical and dense particles, giving evidence of the surface gelation of CaANCs. Their size, around 200nm, was stable under tested conditions (temperature, culture media, presence of serum and presence of encapsulated dye), and their toxicity on keratinocytes was very low. Flow cytometry assays showed that CaANCs are internalized into keratinocytes by endocytosis with a predominant implication of the caveolae-mediated route. Förster resonance energy transfer (FRET) demonstrated that after a 2h contact, the release of CaANC contents in the cytoplasm of keratinocytes was almost complete. The endocytosis of CaANCs by a lysosome-free pathway, and the rapid release of their contents inside keratinocytes, will allow vectorized molecules to fully exhibit their pharmacological or cosmetic activity.
Biochimica et Biophysica Acta | 2017
Emilie Allard-Vannier; Katel Hervé-Aubert; Karine Kaaki; Thibaut Blondy; A. S. Shebanova; K. V. Shaitan; Anastasia A. Ignatova; Marie-Louise Saboungi; Alexey V. Feofanov; Igor Chourpa
BACKGROUND This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA. METHODS SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS. RESULTS The SFP-FA have zeta potential below -6mW and stable hydrodynamic diameter close to 100nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22-27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells. CONCLUSIONS The present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis. GENERAL SIGNIFICANCE Composition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.
European Journal of Pharmaceutics and Biopharmaceutics | 2018
Sanaa Ben Djemaa; Stephanie David; Katel Hervé-Aubert; Annarita Falanga; Stefania Galdiero; Emilie Allard-Vannier; Igor Chourpa; Emilie Munnier
Graphical abstract Figure. No caption available. ABSTRACT The development of an efficient small interfering RNA (siRNA) delivery system has held scientists interest since the discovery of the RNA interference mechanism (RNAi). This strategy gives hope for the treatment of many severe diseases. Herein, we developed hybrid nanovectors able to deliver siRNA to triple negative breast cancer cells. The nanovectors are based on PEGylated superparamagnetic iron oxide nanoparticles (SPION) functionalized with gH625 peptide, chitosan and poly‐l‐arginine. Every component has a key role and specific function: SPION is the core scaffolding the nanovector; PEG participates in the colloidal stability and the immune stealthiness; gH625 peptide promotes the nanovector internalization into cancer cells; cationic polymers provide the siRNA protection and favor siRNA endosomal escape and delivery to cytosol. The formulation was optimized by varying the amount of each compound. The efficacy of the siRNA retention and protection were investigated in the presence of high concentration of serum. Optimized nanovectors show a high uptake by MDA‐MB‐231 cells. The resulting down regulation of GFP expression was 73 ± 3% with our nanovector compared to 59 ± 8% obtained with the siRNA‐Oligofectamine™ complex in the same conditions.
Colloids and Surfaces B: Biointerfaces | 2018
Maximiliano L. Cacicedo; German A. Islan; Ignacio E. León; Vera A. Alvarez; Igor Chourpa; Emilie Allard-Vannier; N. García-Aranda; Z.V. Díaz-Riascos; Y. Fernández; S. Schwartz; I. Abasolo; Guillermo R. Castro
The use of hybrid materials, where a matrix sustains nanoparticles controlling the release of the chemotherapeutic drug, could be beneficial for the treatment of primary tumors prior or after surgery. This localized chemotherapy would guarantee high drug concentrations at the tumor site while precluding systemic drug exposure minimizing undesirable side effects. We combined bacterial cellulose hydrogel (BC) and nanostructured lipid carriers (NLCs) including doxorubicin (Dox) as a drug model. NLCs loaded with cationic Dox (NLCs-H) or neutral Dox (NLCs-N) were fully characterized and their cell internalization and cytotoxic efficacy were evaluated in vitro against MDA-MB-231 cells. Thereafter, a fixed combination of NLCs-H and NLCs-N loaded into BC (BC-NLCs-NH) was assayed in vivo into an orthotopic breast cancer mouse model. NLCs-H showed low encapsulation efficiency (48%) and fast release of the drug while NLCs-N showed higher encapsulation (97%) and sustained drug release. Both NLCs internalized via endocytic pathway, while allowing a sustained release of the Dox, which in turn rendered IC50 values below of those of free Dox. Taking advantage of the differential drug release, a mixture of NLCs-N and NLCs-H was encapsulated into BC matrix (BC-NLCs-NH) and assayed in vivo, showing a significant reduction of tumor growth, metastasis incidence and local drug toxicities.
Bioconjugate Chemistry | 2018
Katel Hervé-Aubert; Emilie Allard-Vannier; Nicolas Joubert; Zineb Lakhrif; Christophe Alric; Camille Martin; Marie-Claude Viaud-Massuard; Isabelle Dimier-Poisson; Nicolas Aubrey; Igor Chourpa
Biocompatible multifunctional nanomedicines (NMs) are known to be an attractive platform for targeted anticancer theranosis. However, these nanomedicines are of interest only if they efficiently target diseased cells and accumulate in tumors. Here we report the synthesis of a new generation of immunotargeted nanomedicines composed of a superparamagnetic iron oxide nanoparticle (SPION) core, polyethylene glycol coating and the anti-HER2 single chain fragment variable (scFv) of Trastuzumab antibody. We developed two novel bioengineered scFv carrying two cysteines located (i) at the end (4D5.1-cys2) or (ii) at the beginning (4D5.2-cys2) of its hexahistidine tag. The scFv bioconjugation was controlled via heterobifunctional linkers including a second generation maleimide (SGM). Our data indicated that the insertion of cysteines at the beginning of the hexahistidine tag was allowed to obtain nearly 2-fold conjugation efficiency (13 scFv/NP) compared to NMs using classical maleimide. As a result, the NMs-4D5.2 built using the optimal 4D5-cys2 and linkers equipped with SGM showed the enhanced recognition of HER2 in an ELISA format and on the surface of SK-BR-3 breast cancer cells in vitro. Their stability in serum was also significantly improved compared to the NMs-4D5. Our results showed the fundamental importance of the controlled ligand conjugation in the perspective of rational design of NMs with tailored physicochemical and biological properties.