Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Igor Chourpa is active.

Publication


Featured researches published by Igor Chourpa.


Analyst | 2005

Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy

Igor Chourpa; Laurence Douziech-Eyrolles; Lazare Ngaboni-Okassa; Jean-François Fouquenet; S. Cohen-Jonathan; Martin Soucé; Hervé Marchais; Pierre Dubois

The chemical and structural properties of ferrite-based nanoparticles, precursors for magnetic drug targeting, have been studied by Raman confocal multispectral imaging. The nanoparticles were synthesised as aqueous magnetic fluids by co-precipitation of ferrous and ferric salts. Dehydrated particles corresponding to co-precipitation (CP) and oxidation (OX) steps of the magnetic fluid preparation have been compared in order to establish oxidation-related Raman features. These are discussed in correlation with the spectra of bulk iron oxides (magnetite, maghemite and hematite) recorded under the same experimental conditions. Considering a risk of laser-induced conversion of magnetite into hematite, this reaction was studied as a function of laser power and exposure to oxygen. Under hematite-free conditions, the Raman data indicated that nanoparticles consisted of magnetite and maghemite, and no oxyhydroxide species were detected. The relative maghemite/magnetite spectral contributions were quantified via fitting of their characteristic bands with Lorentzian profiles. Another quality parameter, contamination of the samples with carbon-related species, was assessed via a broad Raman band at 1580 cm(-1). The optimised Raman parameters permitted assessment of the homogeneity and stability of the solid phase of prepared magnetic fluids using chemical imaging by Raman multispectral mapping. These data were statistically averaged over each image and over six independently prepared lots of each of the CP and OX nanoparticles. The reproducibility of oxidation rates of the particles was satisfactory: the maghemite spectral fraction varied from 27.8 +/- 3.6% for the CP to 43.5 +/- 5.6% for the OX samples. These values were used to speculate about the layered structure of isolated particles. Our data were in agreement with a model with maghemite core and magnetite nucleus. The overall oxidation state of the particles remained nearly unchanged for at least one month.


International Journal of Pharmaceutics | 2008

Novel method of doxorubicin–SPION reversible association for magnetic drug targeting

Emilie Munnier; S. Cohen-Jonathan; Claude Linassier; Laurence Douziech-Eyrolles; Hervé Marchais; Martin Soucé; Katel Hervé; Pierre Dubois; Igor Chourpa

A new method of reversible association of doxorubicin (DOX) to superparamagnetic iron oxide nanoparticles (SPION) is developed for magnetically targeted chemotherapy. The efficacy of this approach is evaluated in terms of drug loading, delivery kinetics and cytotoxicity in vitro. Aqueous suspensions of SPION (ferrofluids) were prepared by coprecipitation of ferric and ferrous chlorides in alkaline medium followed by surface oxidation by ferric nitrate and surface treatment with citrate ions. The ferrofluids were loaded with DOX using a pre-formed DOX-Fe(2+) complex. The resulting drug loading was as high as 14% (w/w). This value exceeds the maximal loading known from literature up today. The release of DOX from the nanoparticles is strongly pH-dependent: at pH 7.4 the amount of drug released attains a plateau of approximately 85% after 1h, whereas at pH 4.0 the release is almost immediate. At both pH, the released drug is iron-free. The in vitro cytotoxicity of the DOX-loaded SPION on the MCF-7 breast cancer cell line is similar to that of DOX in solution or even higher, at low-drug concentrations. The present study demonstrates the potential of the novel method of pH-sensitive DOX-SPION association to design novel magnetic nanovectors for chemotherapy.


Langmuir | 2012

Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting

Karine Kaaki; Katel Hervé-Aubert; Manuela Chiper; Andriy Shkilnyy; Martin Soucé; Roland Benoit; Archibald Paillard; Pierre Dubois; Marie-Louise Saboungi; Igor Chourpa

We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.


International Journal of Pharmaceutics | 2012

A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting

Juliette Gautier; Emilie Munnier; Archibald Paillard; Katel Hervé; Laurence Douziech-Eyrolles; Martin Soucé; Pierre Dubois; Igor Chourpa

One of the new strategies to improve cancer chemotherapy is based on new drug delivery systems, like the polyethylene glycol-coated superparamagnetic iron oxide nanoparticles (PEG-SPION, thereafter called PS). In this study, PS are loaded with doxorubicin (DOX) anticancer drug, using a pre-formed DOX-Fe(2+) complex reversible at lower pH of tumour tissues and cancer cells. The DOX loaded PS (DLPS, 3% w/w DOX/iron oxide) present a hydrodynamic size around 60nm and a zeta potential near zero at physiological pH, both parameters being favourable for increased colloidal stability in biological media and decreased elimination by the immune system. At physiological pH of 7.4, 60% of the loaded drug is gradually released from the DLPS in ∼2h. The intracellular release and distribution of DOX is followed by means of confocal spectral imaging (CSI) of the drug fluorescence. The in vitro cytotoxicity of the DLPS on MCF-7 breast cancer cells is equivalent to that of a DOX solution. The reversible association of DOX to the SPION surface and the role of polymer coating on the drug loading/release are discussed, both being critical for the design of novel stealth magnetic nanovectors for chemotherapy.


Analyst | 2009

Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy

Andriy Shkilnyy; Martin Soucé; Pierre Dubois; Fabienne Warmont; Marie-Louise Saboungi; Igor Chourpa

The present work depicts the efficient one-step synthesis and detailed evaluation of stable aqueous colloids of silver nanoparticles (NPs) coated with poly(ethylene glycol) (PEG) covalently attached to their surface. Due to steric repulsion between polymer-modified surfaces, the stability of the nanoparticle suspension was preserved even at high ionic strength (0.1 M NaCl). At the same time, the PEG coating remains sufficiently permeable to allow surface-enhanced Raman scattering (SERS) from micromolar concentrations of small molecules such as the anticancer drug mitoxantrone (MTX). The enhancement efficiency of the hot spot-free Ag-PEG was compared to that of citrate-stabilized Ag colloids used after pre-aggregation. The potential of the polymer-stabilized colloids developed in this study is discussed in terms of bioanalytical applications of SERS spectroscopy.


European Journal of Pharmaceutics and Biopharmaceutics | 2010

Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique.

A. Paillard-Giteau; V.T. Tran; O. Thomas; Xavier Garric; Jean Coudane; Stéphane Marchal; Igor Chourpa; Jean-Pierre Benoit; Claudia N. Montero-Menei; Marie-Claire Venier-Julienne

Incomplete protein release from PLGA-based microspheres due to protein interactions with the polymer is one of the main issues in the development of PLGA protein-loaded microspheres. In this study, a two-dimensional adsorption model was designed to rapidly assess the anti-adsorption effect of formulation components (additives, additives blended with the polymer or modified polymers). Lysozyme was chosen as a model protein because of its strong, non-specific adsorption on the PLGA surface. This study showed that PEGs, poloxamer 188 and BSA totally inhibited protein adsorption onto the PLGA37.5/25 layer. Similarly, it was emphasised that more hydrophilic polymers were less prone to protein adsorption. The correlation between this model and the in vitro release profile was made by microencapsulating lysozyme with a low loading in the presence of these excipients by a non-denaturing s/o/w encapsulation technique. The precipitation of lysozyme with the amphiphilic poloxamer 188 prior to encapsulation exhibited continuous release of active lysozyme over 3 weeks without any burst effect. To promote lysozyme release in the latter stage of release, a PLGA-PEG-PLGA tribloc copolymer was used; lysozyme was continuously released over 45 days in a biologically active form.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo

Emilie Allard-Vannier; S. Cohen-Jonathan; Juliette Gautier; Katel Hervé-Aubert; Emilie Munnier; Martin Soucé; P. Legras; Catherine Passirani; Igor Chourpa

The aim of this work was to elucidate the impact of polyethylene glycol (PEG) polymeric coating on the in vitro and in vivo stealthiness of magnetic nanocarriers loaded or not with the anticancer drug doxorubicin. The comparison was made between aqueous suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by either citrate ions (C-SPIONs) or PEG(5000) (P-SPIONs), the latter being loaded or not with doxorubicin via the formation of a DOX-Fe(2+) complex (DLP-SPIONs). After determination of their relevant physico-chemical properties (size and surface charge), nanoparticle (NP) stealthiness was studied in vitro (ability to activate the complement system and uptake by monocytes and macrophage-like cells) and in vivo in mice (blood half-life; t(1/2), and biodistribution in main clearance organs). These aspects were quantitatively assessed by atomic absorption spectrometry (AAS). Complement activation dramatically decreased for sterically stabilized P-SPIONs and DLP-SPIONs in comparison with C-SPIONs stabilized by charge repulsion. Monocyte and macrophage uptake was also largely reduced for pegylated formulations loaded or not with doxorubicin. The t(1/2) in blood for P-SPIONs was estimated to be 76 ± 6 min, with an elimination mainly directed to liver and spleen. Thanks to their small size (<80 nm) and a neutral hydrophilic polymer-extended surface, P-SPIONs exhibit prolonged blood circulation and thus potentially an increased level in tumor delivery suitable for magnetic drug targeting applications.


Drug Metabolism and Disposition | 2007

Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines.

Sophie Vibet; Karine Mahéo; Jacques Goré; Pierre Dubois; Philippe Bougnoux; Igor Chourpa

The present work investigates the relationship between cancer cell chemosensitivity and subcellular distribution, molecular interaction, and metabolism of an anticancer drug. To get insights into this relationship, we took advantage of the differential sensitivity of two breast cancer cell lines, MDA-MB-231 and MCF-7, to anthracyclines, along with the property of docosahexaenoic acid (DHA, 22:6n-3), to differentially enhance their cytotoxic activity. The fluorescent drug mitoxantrone (MTX) was used because of the possibility to study its subcellular accumulation by confocal spectral imaging (CSI). The use of CSI allowed us to obtain semiquantitative maps of four intracellular species: nuclear MTX bound to DNA, MTX oxidative metabolite in endoplasmic reticulum, cytosolic MTX, and finally, MTX in a low polarity environment characteristic of membranes. MDA-MB-231 cells were found to be more sensitive to MTX (IC50 = 18 nM) than MCF-7 cells (IC50 = 196 nM). According to fluorescence levels, the nuclear and cytosolic MTX content was higher in MCF-7 than in MDA-MB-231 cells, indicating that mechanisms other than nuclear MTX accumulation account for chemosensitivity. In the cytosol, the relative proportion of oxidized MTX was higher in MDA-MB-231 (60%) than in MCF-7 (7%) cells. DHA sensitized MDA-MB-231 (∼4-fold) but not MCF-7 cells to MTX and increased MTX accumulation by 1.5-fold in MDA-MB-231 cells only. The DHA-stimulated accumulation of MTX was attributed mainly to the oxidative metabolite. Antioxidant N-acetyl-l-cysteine inhibited the DHA effect on both metabolite accumulation and cell sensitization to MTX. We conclude that drug metabolism and compartmentalization are associated with cell chemosensitization, and the related cytotoxicity mechanisms may involve oxidative stress.


FEBS Letters | 1996

Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy

Igor Chourpa; Hamid Morjani; Jean-François Riou; Michel Manfait

Cytotoxicity of several classes of antitumor DNA intercalators is thought to result from disturbance of DNA metabolism following trapping of the nuclear enzyme DNA topoisomerase II as a covalent complex on DNA. Here, molecular interactions of the potent antitumor drug amsacrine (m‐AMSA), an inhibitor of topoisomerase II, within living K562 cancer cells have been studied using surface‐enhanced Raman (SER) spectroscopy. The work is based on data of the previously performed model SER experiments dealing with amsacrine/ DNA, drug/topoisomerase II and drug/DNA/topoisomerase II complexes in aqueous buffer solutions. The SER data indicated two kinds of amsacrine interactions in the model complexes with topoisomerase II alone or within ternary complex: non‐specific (via the acridine moiety) and specific to the enzyme conformation (via the side chain of the drug). These two types of interactions have been both revealed by the micro‐SER spectra of amsacrine within living K562 cancer cells. Our data suppose the specific interactions of amsacrine with topoisomerase II via the side chain of the drug (particular feature of the drug/topoisomerase II and ternary complexes) to be crucial for its inhibitory activity.


Journal of Controlled Release | 2011

Mitochondrial targeting by use of lipid nanocapsules loaded with SV30, an analogue of the small-molecule Bcl-2 inhibitor HA14-1

M Weyland; F. Manero; A. Paillard; D. Grée; G. Viault; Delphine Jarnet; Philippe Menei; P. Juin; Igor Chourpa; Jean-Pierre Benoit; R. Grée; Emmanuel Garcion

Taking advantage from the development of SV30, a new analogue of the pro-apoptotic molecule HA14-1, the aim of this study was to functionally evaluate SV30 and to develop safe nanocarriers for its administration. By using an inversion phase process, 57nm organic solvent-free lipid nanocapsules loaded with SV30 (SV30-LNCs) were formulated. Biological performance of SV30 and SV30-LNCs were evaluated on F98 cells that express Bax and Bcl-2, through survival assays, HPLC, flow cytometry, confocal microscopy and spectral imaging. We observed that SV30 alone or in combination with paclitaxel, etoposide or beam radiation could trigger cell death in a similar fashion to HA14-1. Although partially blocked by Z-VAD-fmk, this effect was coincident to caspase-3 activation. Hence, we established that SV30-LNCs improved SV30 biological activity together with a potentiation of the mitochondrial membrane potential decrease. Interestingly, flow cytometry and confocal analysis indicated that SV30 itself conferred to LNCs improved mitochondrial targeting skills that may present a great interest toward the development of mitochondria targeted nanomedicines.

Collaboration


Dive into the Igor Chourpa's collaboration.

Top Co-Authors

Avatar

Emilie Munnier

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Martin Soucé

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Pierre Dubois

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Emilie Allard-Vannier

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Katel Hervé-Aubert

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Hervé Marchais

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

S. Cohen-Jonathan

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Michel Manfait

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie David

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge