Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Chancerel is active.

Publication


Featured researches published by Emilie Chancerel.


Heredity | 2010

Contrasting relationships between the diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks

Jérémy Derory; Caroline Scotti-Saintagne; Evangelista Bertocchi; Loick Le Dantec; Noemie Graignic; A. Jauffres; Manuela Casasoli; Emilie Chancerel; Catherine Bodénès; Florian J. Alberto; Antoine Kremer

Nucleotide diversity was assessed within nine candidate genes (in total 4.6 kb) for the time of bud burst in nine sessile oak (Quercus petraea) populations distributed in central and northern Europe. The sampled populations were selected on the basis of their contrasting time of bud burst observed in common garden experiments (provenance tests). The candidate genes were selected according to their expression profiles during the transition from quiescent to developing buds and/or their functional role in model plants. The overall nucleotide diversity was large (πtot=6.15 × 10−3; πsilent=11.2 × 10−3), but population differentiation was not larger than for microsatellites. No outlier single-nucleotide polymorphism (SNP), departing from neutral expectation, was found among the total of 125 SNPs. These results contrasted markedly with the significant associations that were observed between the candidate genes and bud burst in segregating populations. Quantitative trait loci (QTLs) for bud burst were identified for 13 year*site seasonal observations in a cloned mapping pedigree. Nineteen QTLs were detected, and QTLs located on linkage groups 2, 5 and 9 contributed repeatedly to more than 12% of the phenotypic variation of the trait. Eight genes were polymorphic in the two parents of the pedigree and could be mapped on the existing genetic map. Five of them located within the confidence intervals of QTLs for bud burst. Interestingly, four of them located within the three QTLs exhibiting the largest contributions to bud burst.


BMC Genomics | 2011

Development and implementation of a highly- multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

Emilie Chancerel; Camille Lepoittevin; Grégoire Le Provost; Yao-Cheng Lin; Juan P. Jaramillo-Correa; Andrew J. Eckert; Jill L. Wegrzyn; Diana Zelenika; Anne Boland; Jean-Marc Frigerio; Philippe Chaumeil; Pauline Garnier-Géré; Christophe Boury; Delphine Grivet; Santiago C. González-Martínez; Pierre Rouzé; Yves Van de Peer; David B. Neale; María Teresa Cervera; Antoine Kremer; Christophe Plomion

BackgroundSingle nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe.ResultsWe designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species.ConclusionsOur results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.


BMC Biology | 2013

High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination

Emilie Chancerel; Jean-Baptiste Lamy; Isabelle Lesur; Céline Noirot; Christophe Klopp; François Ehrenmann; Christophe Boury; Grégoire Le Provost; Philippe Label; Céline Lalanne; Valérie Léger; Franck Salin; Jean-Marc Gion; Christophe Plomion

BackgroundThe availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies.ResultsIn this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable.ConclusionThis study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


BMC Plant Biology | 2012

Comparative mapping in the Fagaceae and beyond with EST-SSRs

Catherine Bodénès; Emilie Chancerel; Oliver Gailing; Giovanni G. Vendramin; Francesca Bagnoli; Jerome Durand; Pablo G. Goicoechea; Carolina Soliani; Fiorella Villani; Claudia Mattioni; Hans Peter Koelewijn; Florent Murat; Jérôme Salse; Guy Roussel; Christophe Boury; Florian J. Alberto; Antoine Kremer; Christophe Plomion

BackgroundGenetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species.ResultsWe developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype.ConclusionsThis study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.


DNA Research | 2016

High-density linkage mapping and distribution of segregation distortion regions in the oak genome

Catherine Bodénès; Emilie Chancerel; François Ehrenmann; Antoine Kremer; Christophe Plomion

We developed the densest single-nucleotide polymorphism (SNP)-based linkage genetic map to date for the genus Quercus. An 8k gene-based SNP array was used to genotype more than 1,000 full-sibs from two intraspecific and two interspecific full-sib families of Quercus petraea and Quercus robur. A high degree of collinearity was observed between the eight parental maps of the two species. A composite map was then established with 4,261 SNP markers spanning 742 cM over the 12 linkage groups (LGs) of the oak genome. Nine genomic regions from six LGs displayed highly significant distortions of segregation. Two main hypotheses concerning the mechanisms underlying segregation distortion are discussed: genetic load vs. reproductive barriers. Our findings suggest a predominance of pre-zygotic to post-zygotic barriers.


Journal of Experimental Botany | 2014

The genetics of water-use efficiency and its relation to growth in maritime pine

Elisa Marguerit; Laurent Bouffier; Emilie Chancerel; Paolo Costa; Frédéric Lagane; Jean-Marc Guehl; Christophe Plomion; Oliver Brendel

To meet the increasing demand of wood biomass worldwide in the context of climate change, developing improved forest tree varieties for high productivity in water-limited conditions is becoming a major issue. This involves breeding for genotypes combining high growth and moderate water loss and thus high water-use efficiency (WUE). The present work provides original data about the genetics of intrinsic WUE (the ratio between net CO2 assimilation rate and stomatal conductance, also estimated by carbon isotope composition of plant material; δ13C) and its relation to growth in Pinus pinaster Ait. First, heritability for δ13C was estimated (0.29) using a 15-year-old progeny trial (Landes provenance), with no significant differences among three sites contrasting in water availability. High intersite correlations (0.63–0.91) and significant but low genotype–environment interactions were detected. Secondly, the genetic architectures of δ13C and growth were studied in a three-generation inbred pedigree, introducing the genetic background of a more-drought-adapted parent (Corsican provenance), at ages of 2 years (greenhouse) and 9 years (plantation). One of the quantitative trait loci (QTLs) identified in the field experiment, explaining 67% of the phenotypic variance, was also found among the QTLs detected in the greenhouse experiment, where it colocalized with QTLs for intrinsic WUE and stomatal conductance. This work was able to show that higher WUE was not genetically linked to less growth, allowing thus genetic improvement of water use. As far as is known, the heritability and QTL effects estimated here are based on the highest number of genotypes measured to date.


Molecular Ecology Resources | 2015

Single‐nucleotide polymorphism discovery and validation in high‐density SNP array for genetic analysis in European white oaks

C. Lepoittevin; Catherine Bodénès; Emilie Chancerel; L. Villate; Isabelle Lesur; Christophe Boury; François Ehrenmann; D. Zelenica; Anne Boland; Céline Besse; Pauline Garnier-Géré; Christophe Plomion; Antoine Kremer

An Illumina Infinium SNP genotyping array was constructed for European white oaks. Six individuals of Quercus petraea and Q. robur were considered for SNP discovery using both previously obtained Sanger sequences across 676 gene regions (1371 in vitro SNPs) and Roche 454 technology sequences from 5112 contigs (6542 putative in silico SNPs). The 7913 SNPs were genotyped across the six parental individuals, full‐sib progenies (one within each species and two interspecific crosses between Q. petraea and Q. robur) and three natural populations from south‐western France that included two additional interfertile white oak species (Q. pubescens and Q. pyrenaica). The genotyping success rate in mapping populations was 80.4% overall and 72.4% for polymorphic SNPs. In natural populations, these figures were lower (54.8% and 51.9%, respectively). Illumina genotype clusters with compression (shift of clusters on the normalized x‐axis) were detected in ~25% of the successfully genotyped SNPs and may be due to the presence of paralogues. Compressed clusters were significantly more frequent for SNPs showing a priori incorrect Illumina genotypes, suggesting that they should be considered with caution or discarded. Altogether, these results show a high experimental error rate for the Infinium array (between 15% and 20% of SNPs potentially unreliable and 10% when excluding all compressed clusters), and recommendations are proposed when applying this type of high‐throughput technique. Finally, results on diversity levels and shared polymorphisms across targeted white oaks and more distant species of the Quercus genus are discussed, and perspectives for future comparative studies are proposed.


BMC Genomics | 2012

Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

Marina de Miguel; Nuria de María; M. Ángeles Guevara; Luis Manuel Díaz; Enrique Sáez-Laguna; David Sánchez-Gómez; Emilie Chancerel; Ismael Aranda; Carmen Collada; Christophe Plomion; José-Antonio Cabezas; María-Teresa Cervera

BackgroundPinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers.ResultsWe obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency.ConclusionsThis study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.


Nature plants | 2018

Oak genome reveals facets of long lifespan

Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Thibault Leroy; Florent Murat; Sébastien Duplessis; Sébastien Faye; Nicolas Francillonne; Karine Labadie; Grégoire Le Provost; Isabelle Lesur; Jérôme Bartholomé; Patricia Faivre-Rampant; Annegret Kohler; Jean-Charles Leplé; Nathalie Chantret; Jun Chen; Anne Dievart; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Marie-Béatrice Bogeat-Triboulot; Marie-Lara Bouffaud; Benjamin Brachi; Emilie Chancerel; David Cohen; Arnaud Couloux; Corinne Da Silva

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.Oaks can live hundreds of years. Comparative genomics using a high-quality genome sequence provides new insights that may explain tree longevity. Samples from branches and corresponding acorns also help quantify heritable somatic mutations.


PLOS ONE | 2016

Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness

Jérôme Bartholomé; Marco C. A. M. Bink; Emilie Chancerel; Christophe Boury; Isabelle Lesur; Fikret Isik; Laurent Bouffier; Christophe Plomion

Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.

Collaboration


Dive into the Emilie Chancerel's collaboration.

Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Antoine Kremer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Boury

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Bodénès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Lesur

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

François Ehrenmann

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Bouffier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grégoire Le Provost

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Bartholomé

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge