Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Lesur is active.

Publication


Featured researches published by Isabelle Lesur.


Molecular Ecology Resources | 2016

Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies

Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Nathalie Boudet; Christophe Boury; Aurélie Canaguier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; François Ehrenmann; Barbara Estrada-Mairey; Stéphanie Fouteau; Nicolas Francillonne; Christine Gaspin; Cécile Guichard; Christophe Klopp; Karine Labadie; Céline Lalanne; Isabelle Le Clainche; Jean-Charles Leplé; Grégoire Le Provost; Thibault Leroy; Isabelle Lesur; Francis Martin; Jonathan Mercier

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole‐genome shotgun (WGS) approach, without the use of costly and time‐consuming methods, such as fosmid or BAC clone‐based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS‐FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired‐end and mate‐pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired‐end reads and contaminants detected, resulting in a total of 17 910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


BMC Biology | 2013

High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination

Emilie Chancerel; Jean-Baptiste Lamy; Isabelle Lesur; Céline Noirot; Christophe Klopp; François Ehrenmann; Christophe Boury; Grégoire Le Provost; Philippe Label; Céline Lalanne; Valérie Léger; Franck Salin; Jean-Marc Gion; Christophe Plomion

BackgroundThe availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies.ResultsIn this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable.ConclusionThis study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome.


Forest Ecology and Management | 2002

Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin

Sándor Bordács; Flaviu Popescu; Danko Slade; Ulrike M. Csaikl; Isabelle Lesur; Attila Borovics; Pál Kézdy; Armin O. König; Dušan Gömöry; Simon Brewer; Kornel Burg; Rémy J. Petit

A total of 1113 oak trees from 222 populations originating from eight countries (Austria, Bosnia-Herzegovina, Croatia, Hungary, Romania, Slovakia, Slovenia, Yugoslavia) were sampled in natural populations or in provenance tests. The sampled trees belong to four different species (Quercus robur, Quercus petraea, Quercus pubescens, Quercus frainetto) and to several putative subspecies. Variation at four chloroplast DNA (cpDNA) fragments was studied using restriction enzymes, resulting in the detection of 12 haplotypes. One haplotype was present in 36% of the trees, and six were found in 6–17% of the trees. The haplotypes are shared extensively between species and subspecies. They belong to three different lineages (A, C and E) and are phylogeographically structured in the region investigated. Haplotypes of lineage E dominate to the east of the Carpathian mountains in Romania, whereas the Carpathian Basin seems to have been colonised along several different colonisation routes, from the Balkan peninsula but also from Italy. The data support the possible role of climatic instability during the late glacial period in shaping this complex geographic structure. The presence of several secondary refugia could be inferred in the region, which have played a major role in the second step of recolonisation, at the onset of the Holocene period. # 2002 Elsevier Science B.V. All rights reserved.


BMC Genomics | 2011

Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

Patricia Faivre Rampant; Isabelle Lesur; Clément Boussardon; Frédérique Bitton; Marie-Laure Martin-Magniette; Catherine Bodénès; Grégoire Le Provost; Hélène Bergès; Sylvia Fluch; Antoine Kremer; Christophe Plomion

BackgroundOne of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences.ResultsThe Eco RI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera.ConclusionsThis BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak.


BMC Genomics | 2014

Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

Christophe Plomion; Emilie Chancerel; Jeffrey B. Endelman; Jean-Baptiste Lamy; Eric Mandrou; Isabelle Lesur; François Ehrenmann; Fikret Isik; Marco C. A. M. Bink; Laurent Bouffier

BackgroundThe accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe.ResultsUsing a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (He) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of He across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD.ConclusionsThese results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species.


Molecular Ecology | 2016

Signatures of local adaptation in candidate genes of oaks ( Quercus spp.) with respect to present and future climatic conditions

Christian Rellstab; Stefan Zoller; Lorenz Walthert; Isabelle Lesur; Andrea R. Pluess; René Graf; Catherine Bodénès; Christoph Sperisen; Antoine Kremer; Felix Gugerli

Testing how populations are locally adapted and predicting their response to their future environment is of key importance in view of climate change. Landscape genomics is a powerful approach to investigate genes and environmental factors involved in local adaptation. In a pooled amplicon sequencing approach of 94 genes in 71 populations, we tested whether >3500 single nucleotide polymorphisms (SNPs) in the three most common oak species in Switzerland (Quercus petraea, Q. pubescens, Q. robur) show an association with abiotic factors related to local topography, historical climate and soil characteristics. In the analysis including all species, the most frequently associated environmental factors were those best describing the habitats of the species. In the species‐specific analyses, the most important environmental factors and associated SNPs greatly differed among species. However, we identified one SNP and seven genes that were associated with the same environmental factor across all species. We finally used regressions of allele frequencies of the most strongly associated SNPs along environmental gradients to predict the risk of nonadaptedness (RONA), which represents the average change in allele frequency at climate‐associated loci theoretically required to match future climatic conditions. RONA is considerable for some populations and species (up to 48% in single populations) and strongly differs among species. Given the long generation time of oaks, some of the required allele frequency changes might not be realistic to achieve based on standing genetic variation. Hence, future adaptedness requires gene flow or planting of individuals carrying beneficial alleles from habitats currently matching future climatic conditions.


Molecular Ecology Resources | 2015

Single‐nucleotide polymorphism discovery and validation in high‐density SNP array for genetic analysis in European white oaks

C. Lepoittevin; Catherine Bodénès; Emilie Chancerel; L. Villate; Isabelle Lesur; Christophe Boury; François Ehrenmann; D. Zelenica; Anne Boland; Céline Besse; Pauline Garnier-Géré; Christophe Plomion; Antoine Kremer

An Illumina Infinium SNP genotyping array was constructed for European white oaks. Six individuals of Quercus petraea and Q. robur were considered for SNP discovery using both previously obtained Sanger sequences across 676 gene regions (1371 in vitro SNPs) and Roche 454 technology sequences from 5112 contigs (6542 putative in silico SNPs). The 7913 SNPs were genotyped across the six parental individuals, full‐sib progenies (one within each species and two interspecific crosses between Q. petraea and Q. robur) and three natural populations from south‐western France that included two additional interfertile white oak species (Q. pubescens and Q. pyrenaica). The genotyping success rate in mapping populations was 80.4% overall and 72.4% for polymorphic SNPs. In natural populations, these figures were lower (54.8% and 51.9%, respectively). Illumina genotype clusters with compression (shift of clusters on the normalized x‐axis) were detected in ~25% of the successfully genotyped SNPs and may be due to the presence of paralogues. Compressed clusters were significantly more frequent for SNPs showing a priori incorrect Illumina genotypes, suggesting that they should be considered with caution or discarded. Altogether, these results show a high experimental error rate for the Infinium array (between 15% and 20% of SNPs potentially unreliable and 10% when excluding all compressed clusters), and recommendations are proposed when applying this type of high‐throughput technique. Finally, results on diversity levels and shared polymorphisms across targeted white oaks and more distant species of the Quercus genus are discussed, and perspectives for future comparative studies are proposed.


Molecular Ecology Resources | 2016

High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster)

Christophe Plomion; Jérôme Bartholomé; Isabelle Lesur; Christophe Boury; Isabel Rodríguez-Quilón; Hélène Lagraulet; François Ehrenmann; Laurent Bouffier; Jean-Marc Gion; Delphine Grivet; Marina de Miguel; Nuria de María; María-Teresa Cervera; Francesca Bagnoli; Fikret Isik; Giovanni G. Vendramin; Santiago C. González-Martínez

Maritime pine provides essential ecosystem services in the south‐western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three‐generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene‐based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.


Molecular Ecology Resources | 2015

A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation

Isabelle Lesur; Alison Bechade; Céline Lalanne; Christophe Klopp; Céline Noirot; Jean-Charles Leplé; Antoine Kremer; Christophe Plomion; Grégoire Le Provost

Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47 357 Sanger ESTs and 2.2M Roche‐454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21 057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28 079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model‐based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.


Nature plants | 2018

Oak genome reveals facets of long lifespan

Christophe Plomion; Jean-Marc Aury; Joelle Amselem; Thibault Leroy; Florent Murat; Sébastien Duplessis; Sébastien Faye; Nicolas Francillonne; Karine Labadie; Grégoire Le Provost; Isabelle Lesur; Jérôme Bartholomé; Patricia Faivre-Rampant; Annegret Kohler; Jean-Charles Leplé; Nathalie Chantret; Jun Chen; Anne Dievart; Tina Alaeitabar; Valérie Barbe; Caroline Belser; Hélène Bergès; Catherine Bodénès; Marie-Béatrice Bogeat-Triboulot; Marie-Lara Bouffaud; Benjamin Brachi; Emilie Chancerel; David Cohen; Arnaud Couloux; Corinne Da Silva

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.Oaks can live hundreds of years. Comparative genomics using a high-quality genome sequence provides new insights that may explain tree longevity. Samples from branches and corresponding acorns also help quantify heritable somatic mutations.

Collaboration


Dive into the Isabelle Lesur's collaboration.

Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Grégoire Le Provost

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Antoine Kremer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Emilie Chancerel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Boury

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

François Ehrenmann

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Bodénès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Céline Lalanne

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Bartholomé

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge