Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Picard is active.

Publication


Featured researches published by Emilie Picard.


Journal of Clinical Investigation | 2007

CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration

Christophe Combadière; Charles Feumi; William Raoul; Nicole Keller; Mathieu P. Rodero; Adeline Pézard; Sophie Lavalette; Marianne Houssier; Laurent Jonet; Emilie Picard; Patrice Debré; Mirna Sirinyan; Philippe Deterre; Tania Ferroukhi; Salomon-Yves Cohen; Dominique Chauvaud; Jean-Claude Jeanny; Sylvain Chemtob; Francine Behar-Cohen; Florian Sennlaub

The role of retinal microglial cells (MCs) in age-related macular degeneration (AMD) is unclear. Here we demonstrated that all retinal MCs express CX3C chemokine receptor 1 (CX3CR1) and that homozygosity for the CX3CR1 M280 allele, which is associated with impaired cell migration, increases the risk of AMD. In humans with AMD, MCs accumulated in the subretinal space at sites of retinal degeneration and choroidal neovascularization (CNV). In CX3CR1-deficient mice, MCs accumulated subretinally with age and albino background and after laser impact preceding retinal degeneration. Raising the albino mice in the dark prevented both events. The appearance of lipid-bloated subretinal MCs was drusen-like on funduscopy of senescent mice, and CX3CR1-dependent MC accumulation was associated with an exacerbation of experimental CNV. These results show that CX3CR1-dependent accumulation of subretinal MCs evokes cardinal features of AMD. These findings reveal what we believe to be a novel pathogenic process with important implications for the development of new therapies for AMD.


Blood | 2011

Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A

Jean-Sebastien Joyal; Nicholas Sitaras; François Binet; José Carlos Rivera; Andreas Stahl; Karine Zaniolo; Zhuo Shao; Anna Polosa; Tang Zhu; David Hamel; Mikheil Djavari; Dario Kunik; Jean-Claude Honoré; Emilie Picard; Alexandra Zabeida; Daya R. Varma; Gilles R.X. Hickson; Joseph A. Mancini; Michael Klagsbrun; Santiago Costantino; Christian M. Beauséjour; Pierre Lachapelle; Lois E. H. Smith; Sylvain Chemtob; Przemyslaw Sapieha

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1β. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Investigative Ophthalmology & Visual Science | 2011

Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy

Zhuo Shao; A. Dorfman; Swathi Seshadri; Mikheil Djavari; Elsa Kermorvant-Duchemin; Florian Sennlaub; Martine Blais; Anna Polosa; Daya R. Varma; Jean-Sebastien Joyal; Pierre Lachapelle; Pierre Hardy; Nicholas Sitaras; Emilie Picard; Joseph G. Mancini; Przemyslaw Sapieha; Sylvain Chemtob

PURPOSE Retinopathy of prematurity (ROP) is a major cause of visual handicap in the pediatric population. To date, this disorder is thought to stem from deficient retinal vascularization. Intriguingly, functional electrophysiological studies in patients with mild or moderate ROP and in the oxygen-induced retinopathy (OIR) model in rats reveal central photoreceptor disruption that overlies modest retinal vessel loss; a paucity of retinal vasculature occurs predominantly at the periphery. Given that choroidal circulation is the major source of oxygen and nutrients to the photoreceptors, the authors set out to investigate whether the choroidal vasculature system may be affected in OIR. METHODS Rat models of OIR treating newborn animals with 80% or 50/10% alternated oxygen level for the first two postnatal weeks were used to mimic ROP in humans. Immunohistology staining and vascular corrosion casts were used to investigate the vessel layout of the eye. To investigate the effect of 15-deoxy-Δ12,14-PGJ(2) (15d-PGJ(2); a nonenzymatic product of prostaglandin D(2)) on endothelial cells, in vitro cell culture and ex vivo choroid explants were employed and intravitreal injections were performed in animals. RESULTS The authors herein demonstrate that deficient vascularity occurs not only in the retinal plexus but also in the choroid. This sustained, marked choroidal degeneration is specifically confined to central regions of the retina that present persistent photoreceptor loss and corresponding functional deficits. Moreover, the authors show that 15d-PGJ(2) is a prominent contributor to this choroidal decay. CONCLUSIONS The authors demonstrate for the first time pronounced, sustained choroidal vascular involution during the development of ROP. Findings also suggest that effective therapeutic strategies to counter ROP should consider choroidal preservation.


Nature Medicine | 2014

Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis

Jean Sébastien Joyal; Satra Nim; Tang Zhu; Nicholas Sitaras; José Carlos Rivera; Zhuo Shao; Przemyslaw Sapieha; David Hamel; Melanie Sanchez; Karine Zaniolo; Manon St-Louis; Johanne Ouellette; Martín Montoya-Zavala; Alexandra Zabeida; Emilie Picard; Pierre Hardy; Vikrant K. Bhosle; Daya R. Varma; Christian M. Beauséjour; Christelle Boileau; William H. Klein; Morley D. Hollenberg; Alfredo Ribeiro-da-Silva; Gregor Andelfinger; Sylvain Chemtob

Neurons have an important role in retinal vascular development. Here we show that the G protein–coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.


Investigative Ophthalmology & Visual Science | 2011

Ghrelin Modulates Physiologic and Pathologic Retinal Angiogenesis through GHSR-1a

Karine Zaniolo; Przemyslaw Sapieha; Zhuo Shao; Andreas Stahl; Tang Zhu; Sophie Tremblay; Emilie Picard; Ankush Madaan; Martine Blais; Pierre Lachapelle; Joseph G. Mancini; Pierre Hardy; Lois E. H. Smith; Huy Ong; Sylvain Chemtob

PURPOSE Vascular degeneration and the ensuing abnormal vascular proliferation are central to proliferative retinopathies. Given the metabolic discordance associated with these diseases, the authors explored the role of ghrelin and its growth hormone secretagogue receptor 1a (GHSR-1a) in proliferative retinopathy. METHODS In a rat model of oxygen-induced retinopathy (OIR), the contribution of ghrelin and GHSR-1a was investigated using the stable ghrelin analogs [Dap3]-ghrelin and GHRP6 and the GSHR-1a antagonists JMV-2959 and [D-Lys3]-GHRP-6. Plasma and retinal levels of ghrelin were analyzed by ELISA, whereas retinal expression and localization of GHSR-1a were examined by immunohistochemistry and Western blot analysis. The angiogenic and vasoprotective properties of ghrelin and its receptor were further confirmed in aortic explants and in models of vaso-obliteration. RESULTS Ghrelin is produced locally in the retina, whereas GHSR-1a is abundantly expressed in retinal endothelial cells. Ghrelin levels decrease during the vaso-obliterative phase and rise during the proliferative phase of OIR. Intravitreal delivery of [Dap3]-ghrelin during OIR significantly reduces retinal vessel loss when administered during the hyperoxic phase. Conversely, during the neovascular phase, ghrelin promotes pathologic angiogenesis through the activation of GHSR-1a. These angiogenic effects were confirmed ex vivo in aortic explants. CONCLUSIONS New roles were disclosed for the ghrelin-GHSR-1a pathway in the preservation of retinal vasculature during the vaso-obliterative phase of OIR and during the angiogenic phase of OIR. These findings suggest that the ghrelin-GHSR-1a pathway can exert opposing effects on retinal vasculature, depending on the phase of retinopathy, and thus holds therapeutic potential for proliferative retinopathies.


Journal of Medicinal Chemistry | 2012

Azapeptide analogues of the growth hormone releasing peptide 6 as cluster of differentiation 36 receptor ligands with reduced affinity for the growth hormone secretagogue receptor 1a.

Caroline Proulx; Emilie Picard; Damien Boeglin; Petra Pohankova; Sylvain Chemtob; Huy Ong; William D. Lubell

The synthetic hexapeptide growth hormone releasing peptide-6 (GHRP-6) exhibits dual affinity for the growth hormone secretagogue receptor 1a (GHS-R1a) and the cluster of differentiation 36 (CD36) receptor. Azapeptide GHRP-6 analogues have been synthesized, exhibiting micromolar affinity to the CD36 receptor with reduced affinity toward the GHS-R1a. A combinatorial split-and-mix approach furnished aza-GHRP-6 leads, which were further examined by alanine scanning. Incorporation of an aza-amino acid residue respectively at the D-Trp(2), Ala(3), or Trp(4) position gave aza-GHRP-6 analogues with reduced affinity toward the GHS-R1a by at least a factor of 100 and in certain cases retained affinity for the CD36 receptor. In the latter cases, the D-Trp(2) residue proved important for CD36 receptor affinity; however, His(1) could be replaced by Ala(1) without considerable loss of binding. In a microvascular sprouting assay using a choroid explant, [azaTyr(4)]-GHRP-6 (15), [Ala(1), azaPhe(2)]-GHRP-6 (16), and [azaLeu(3), Ala(6)]-GHRP-6 (33) all exhibited antiangiogenic activity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Sustained hypercapnia induces cerebral microvascular degeneration in the immature brain through induction of nitrative stress.

Jean-Claude Honoré; Amna Kooli; Xin Hou; David Hamel; José Carlos Rivera; Emilie Picard; Pierre Hardy; Sophie Tremblay; Daya R. Varma; Robert P. Jankov; Joseph A. Mancini; Michael Balazy; Sylvain Chemtob

Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress. We investigated whether exposure to clinically relevant sustained high CO(2) causes microvascular degeneration in the newborn brain by inducing nitrative stress, and whether this microvascular degeneration has an impact on brain growth. Newborn rat pups were exposed to 10% CO(2) as inspired gas (Pa(CO(2)) = 60-70 mmHg) starting within 24 h of birth until postnatal day 7 (P7). Brains were notably collected at different time points to measure vascular density, determine brain cortical nitrite/nitrate, and trans-arachidonic acids (TAAs; products of nitration) levels as effectors of vessel damage. Chronic exposure of rat pups to high CO(2) (Pa(CO(2)) approximately 65 mmHg) induced a 20% loss in cerebrovascular density at P3 and a 15% decrease in brain mass at P7; at P30, brain mass remained lower in CO(2)-exposed animals. Within 24 h of exposure to CO(2), brain eNOS expression and production of nitrite/nitrate doubled, lipid nitration products (TAAs) increased, and protein nitration (3-nitrotyrosine immunoreactivity) was also coincidently augmented on brain microvessels (lectin positive). Intracerebroventricular injection of TAAs (10 microM) replicated cerebrovascular degeneration. Treatment of rat pups with NOS inhibitor (L-N(omega)-nitroarginine methyl ester) or a peroxynitrite decomposition catalyst (FeTPPS) prevented hypercapnia-induced microvascular degeneration and preserved brain mass. Cytotoxic effects of high CO(2) were reproduced in vitro/ex vivo on cultured endothelial cells and sprouting microvessels. In summary, hypercapnia at values frequently observed in preterm infants with chronic lung disease results in increased nitrative stress, which leads to cerebral cortical microvascular degeneration and curtails brain growth.


Aging (Albany NY) | 2010

CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits

Emilie Picard; Marianne Houssier; Kim Bujold; Przemyslaw Sapieha; William D. Lubell; A. Dorfman; J. Racine; Pierre Hardy; Maria Febbraio; Pierre Lachapelle; Huy Ong; Florian Sennlaub; Sylvain Chemtob


Molecular Vision | 2008

The protective role of transferrin in Müller glial cells after iron-induced toxicity

Emilie Picard; Isabelle Fontaine; Laurent Jonet; Florian Guillou; Francine Behar-Cohen; Yves Courtois; Jean-Claude Jeanny


Molecular Vision | 2010

Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice

Emilie Picard; Laurent Jonet; Claire Sergeant; Marie-Hélène Vesvres; Francine Behar-Cohen; Yves Courtois; Jean-Claude Jeanny

Collaboration


Dive into the Emilie Picard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Hardy

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

David Hamel

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Lachapelle

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Tang Zhu

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge