Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Sitaras is active.

Publication


Featured researches published by Nicholas Sitaras.


Blood | 2011

Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A

Jean-Sebastien Joyal; Nicholas Sitaras; François Binet; José Carlos Rivera; Andreas Stahl; Karine Zaniolo; Zhuo Shao; Anna Polosa; Tang Zhu; David Hamel; Mikheil Djavari; Dario Kunik; Jean-Claude Honoré; Emilie Picard; Alexandra Zabeida; Daya R. Varma; Gilles R.X. Hickson; Joseph A. Mancini; Michael Klagsbrun; Santiago Costantino; Christian M. Beauséjour; Pierre Lachapelle; Lois E. H. Smith; Sylvain Chemtob; Przemyslaw Sapieha

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1β. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Microglia and Interleukin-1β in Ischemic Retinopathy Elicit Microvascular Degeneration Through Neuronal Semaphorin-3A

José Carlos Rivera; Nicholas Sitaras; Baraa Noueihed; David Hamel; Ankush Madaan; Tianwei (Ellen) Zhou; Jean-Claude Honoré; Christiane Quiniou; Jean-Sebastien Joyal; Pierre Hardy; Florian Sennlaub; William D. Lubell; Sylvain Chemtob

Objective—Proinflammatory cytokines contribute to the development of retinal vasculopathies. However, the role of these factors and the mechanisms by which they elicit their effects in retina are not known. We investigated whether activated microglia during early stages of ischemic retinopathy produces excessive interleukin-1&bgr; (IL-1&bgr;), which elicits retinal microvascular degeneration not directly but rather by triggering the release of the proapoptotic/repulsive factor semaphorin-3A (Sema3A) from neurons. Approach and Results—Sprague Dawley rats subjected to retinopathy induced by hyperoxia (80% O2; O2-induced retinopathy) exhibited retinal vaso-obliteration associated with microglial activation, NLRP3 upregulation, and IL-1&bgr; and Sema3A release; IL-1&bgr; was mostly generated by microglia. Intraperitoneal administration of IL-1 receptor antagonists (Kineret, or rytvela [101.10]) decreased these effects and enhanced retinal revascularization; knockdown of Sema3A resulted in microvessel preservation and, conversely, administration of IL-1&bgr; caused vaso-obliteration. In vitro, IL-1&bgr; derived from activated primary microglial cells, cultured under hyperoxia, stimulated the release of Sema3A in retinal ganglion cells-5, which in turn induced apoptosis of microvascular endothelium; antagonism of IL-1 receptor decreased microglial activation and on retinal ganglion cells-5 abolished the release of Sema3A inhibiting ensuing endothelial cell apoptosis. IL-1&bgr; was not directly cytotoxic to endothelial cells. Conclusions—Our findings suggest that in the early stages of O2-induced retinopathy, retinal microglia are activated to produce IL-1&bgr;, which sustains the activation of microglia and induces microvascular injury through the release of Sema3A from adjacent neurons. Interference with IL-1 receptor or Sema3A actions preserves the microvascular bed in ischemic retinopathies and, consequently, decreases ensued pathological preretinal neovascularization.


Cell Metabolism | 2013

Neuron-Derived Semaphorin 3A Is an Early Inducer of Vascular Permeability in Diabetic Retinopathy via Neuropilin-1

Agustin Cerani; Nicolas Tetreault; Catherine Ménard; Eric Lapalme; Chintan Patel; Nicholas Sitaras; Felix Beaudoin; Dominique Leboeuf; Vincent De Guire; François Binet; Agnieszka Dejda; Flavio Rezende; Khalil Miloudi; Przemyslaw Sapieha

The deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. We demonstrate, by a series of orthogonal approaches, that neutralization of semaphorin 3A efficiently prevents diabetes-induced retinal vascular leakage in a stage of the disease when vascular endothelial growth factor neutralization is inefficient. These observations were corroborated in Tg(Cre-Esr1)/Nrp1(flox/flox) conditional knockout mice. Our findings identify a therapeutic target for macular edema and provide further evidence for neurovascular crosstalk in the pathogenesis of DR.


Cell Metabolism | 2013

Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1α degradation of netrin-1.

François Binet; Gaelle Mawambo; Nicholas Sitaras; Nicolas Tetreault; Eric Lapalme; Sandra Favret; Agustin Cerani; Dominique Leboeuf; Sophie Tremblay; Flavio Rezende; Aimee M. Juan; Andreas Stahl; Jean-Sebastien Joyal; Eric Milot; Randal J. Kaufman; Martin Guimond; Timothy E. Kennedy; Przemyslaw Sapieha

In stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide evidence that the failure of reparative angiogenesis is temporally and spatially associated with endoplasmic reticulum (ER) stress. The canonical ER stress pathways of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme-1α (IRE1α) are activated within hypoxic/ischemic retinal ganglion neurons, initiating a cascade that results in angiostatic signals. Our findings demonstrate that the endoribonuclease IRE1α degrades the classical guidance cue netrin-1. This neuron-derived cue triggers a critical reparative-angiogenic switch in neural macrophage/microglial cells. Degradation of netrin-1, by persistent neuronal ER stress, thereby hinders vascular regeneration. These data identify a neuronal-immune mechanism that directly regulates reparative angiogenesis.


Investigative Ophthalmology & Visual Science | 2011

Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy

Zhuo Shao; A. Dorfman; Swathi Seshadri; Mikheil Djavari; Elsa Kermorvant-Duchemin; Florian Sennlaub; Martine Blais; Anna Polosa; Daya R. Varma; Jean-Sebastien Joyal; Pierre Lachapelle; Pierre Hardy; Nicholas Sitaras; Emilie Picard; Joseph G. Mancini; Przemyslaw Sapieha; Sylvain Chemtob

PURPOSE Retinopathy of prematurity (ROP) is a major cause of visual handicap in the pediatric population. To date, this disorder is thought to stem from deficient retinal vascularization. Intriguingly, functional electrophysiological studies in patients with mild or moderate ROP and in the oxygen-induced retinopathy (OIR) model in rats reveal central photoreceptor disruption that overlies modest retinal vessel loss; a paucity of retinal vasculature occurs predominantly at the periphery. Given that choroidal circulation is the major source of oxygen and nutrients to the photoreceptors, the authors set out to investigate whether the choroidal vasculature system may be affected in OIR. METHODS Rat models of OIR treating newborn animals with 80% or 50/10% alternated oxygen level for the first two postnatal weeks were used to mimic ROP in humans. Immunohistology staining and vascular corrosion casts were used to investigate the vessel layout of the eye. To investigate the effect of 15-deoxy-Δ12,14-PGJ(2) (15d-PGJ(2); a nonenzymatic product of prostaglandin D(2)) on endothelial cells, in vitro cell culture and ex vivo choroid explants were employed and intravitreal injections were performed in animals. RESULTS The authors herein demonstrate that deficient vascularity occurs not only in the retinal plexus but also in the choroid. This sustained, marked choroidal degeneration is specifically confined to central regions of the retina that present persistent photoreceptor loss and corresponding functional deficits. Moreover, the authors show that 15d-PGJ(2) is a prominent contributor to this choroidal decay. CONCLUSIONS The authors demonstrate for the first time pronounced, sustained choroidal vascular involution during the development of ROP. Findings also suggest that effective therapeutic strategies to counter ROP should consider choroidal preservation.


Nature Medicine | 2014

Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis

Jean Sébastien Joyal; Satra Nim; Tang Zhu; Nicholas Sitaras; José Carlos Rivera; Zhuo Shao; Przemyslaw Sapieha; David Hamel; Melanie Sanchez; Karine Zaniolo; Manon St-Louis; Johanne Ouellette; Martín Montoya-Zavala; Alexandra Zabeida; Emilie Picard; Pierre Hardy; Vikrant K. Bhosle; Daya R. Varma; Christian M. Beauséjour; Christelle Boileau; William H. Klein; Morley D. Hollenberg; Alfredo Ribeiro-da-Silva; Gregor Andelfinger; Sylvain Chemtob

Neurons have an important role in retinal vascular development. Here we show that the G protein–coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.


FEBS Letters | 2013

Semaphorin 3F forms an anti-angiogenic barrier in outer retina

Anima Buehler; Nicholas Sitaras; Sandra Favret; Felicitas Bucher; Stefanie Berger; Amelie Pielen; Jean-Sebastian Joyal; Aimee M. Juan; Gottfried Martin; Guenther Schlunck; Hansjürgen T. Agostini; Michael Klagsbrun; Lois E. H. Smith; Przemyslaw Sapieha; Andreas Stahl

Semaphorins are known modulators of axonal sprouting and angiogenesis. In the retina, we identified a distinct and almost exclusive expression of Semaphorin 3F in the outer layers. Interestingly, these outer retinal layers are physiologically avascular. Using functional in vitro models, we report potent anti‐angiogenic effects of Semaphorin 3F on both retinal and choroidal vessels. In addition, human retinal pigment epithelium isolates from patients with pathologic neovascularization of the outer retina displayed reduced Semaphorin 3F expression in 10 out of 15 patients. Combined, these results elucidate a functional role for Semaphorin 3F in the outer retina where it acts as a vasorepulsive cue to maintain physiologic avascularity.


American Journal of Pathology | 2015

Retinal Neurons Curb Inflammation and Enhance Revascularization in Ischemic Retinopathies via Proteinase-Activated Receptor-2

Nicholas Sitaras; José Carlos Rivera; Baraa Noueihed; Milsa Bien-Aimé; Karine Zaniolo; Samy Omri; David Hamel; Tang Zhu; Pierre Hardy; Przemyslaw Sapieha; Jean-Sebastien Joyal; Sylvain Chemtob

Ischemic retinopathies are characterized by sequential vaso-obliteration followed by abnormal intravitreal neovascularization predisposing patients to retinal detachment and blindness. Ischemic retinopathies are associated with robust inflammation that leads to generation of IL-1β, which causes vascular degeneration and impairs retinal revascularization in part through the liberation of repulsive guidance cue semaphorin 3A (Sema3A). However, retinal revascularization begins as inflammation culminates in ischemic retinopathies. Because inflammation leads to activation of proteases involved in the formation of vasculature, we hypothesized that proteinase-activated receptor (Par)-2 (official name F2rl1) may modulate deleterious effects of IL-1β. Par2, detected mostly in retinal ganglion cells, was up-regulated in oxygen-induced retinopathy. Surprisingly, oxygen-induced retinopathy-induced vaso-obliteration and neovascularization were unaltered in Par2 knockout mice, suggesting compensatory mechanisms. We therefore conditionally knocked down retinal Par2 with shRNA-Par2-encoded lentivirus. Par2 knockdown interfered with normal revascularization, resulting in pronounced intravitreal neovascularization; conversely, the Par2 agonist peptide (SLIGRL) accelerated normal revascularization. In vitro and in vivo exploration of mechanisms revealed that IL-1β induced Par2 expression, which in turn down-regulated sequentially IL-1 receptor type I and Sema3A expression through Erk/Jnk-dependent processes. Collectively, our findings unveil an important mechanism by which IL-1β regulates its own endothelial cytotoxic actions by augmenting neuronal Par2 expression to repress sequentially IL-1 receptor type I and Sema3A expression. Timely activation of Par2 may be a promising therapeutic avenue in ischemic retinopathies.


Investigative Ophthalmology & Visual Science | 2013

Pro-NGF induces endothelial cell death via the P75 neurotrophin receptor (P75NTR) in a mouse model of oxygen-induced retinopathy (OIR)

Nicholas Sitaras; H. Uri Saragovi; Sylvain Chemtob; Przemyslaw Sapieha


Investigative Ophthalmology & Visual Science | 2015

The succinate receptor GPR91 signals from the Endoplasmic Reticulum

Raphaël Rouget; Melanie Sanchez; David Hamel; François Duhamel; Mathieu Nadeau-Vallée; Tang Zhu; Carlos Rivera; Nicholas Sitaras; Przemyslaw Sapieha; Sylvain Chemtob

Collaboration


Dive into the Nicholas Sitaras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Hamel

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agustin Cerani

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Eric Lapalme

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Flavio Rezende

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Karine Zaniolo

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge