Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emilie Vessières is active.

Publication


Featured researches published by Emilie Vessières.


Hypertension | 2007

Flow-Induced Remodeling in Resistance Arteries From Obese Zucker Rats Is Associated With Endothelial Dysfunction

Céline Bouvet; Eric J. Belin de Chantemèle; Anne Laure Guihot; Emilie Vessières; Arnaud Bocquet; Odile Dumont; Alain Jardel; Laurent Loufrani; Pierre Moreau; Daniel Henrion

Chronic increases in blood flow increase arterial diameter and NO-dependent dilation in resistance arteries. Because endothelial dysfunction accompanies metabolic syndrome, we hypothesized that flow-mediated remodeling might be impaired in obese rat resistance arteries. Obese and lean Zucker rat mesenteric resistance arteries were exposed to chronic flow increases through arterial ligation in vivo: arteries exposed to high flow were compared with normal flow arteries. Diameter was measured in vitro in cannulated arteries using pressure arteriography. After 7 days, outward remodeling (diameter increased from 346±9 to 412±11 &mgr;m at 100 mm Hg) occurred in lean high-flow arteries. Endothelium-dependent tone was reduced in high-flow arteries from obese rats by contrast with lean animals. On the other hand, diameter enlargement occurred similarly in the 2 strains. The involvement of NO in endothelium-dependent dilation (evidenced by NO blockade) and endothelial NO synthase phosphorylation was smaller in obese than in lean rats. Superoxide anion and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunit expression (p67phox and gp91phox) increased in obese rats and were higher in high-flow than in control arteries. Acute Tempol (a catalase mimetic), catalase plus superoxide dismutase, and l-arginine plus tetrahydrobiopterin restored endothelium-dependent dilation in obese rat normal and high-flow arteries to the level found in lean control arteries. Thus, flow-induced remodeling in obese resistance arteries was associated with a reduced endothelium-mediated dilation because of a decreased NO bioavailability and an excessive superoxide production. This dysfunction might have negative consequences in ischemic diseases in patients with obesity or metabolic syndrome.


Journal of Biological Chemistry | 2013

Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells.

Valérie Desquiret-Dumas; Naïg Gueguen; Géraldine Leman; Stéphanie Baron; Valérie Nivet-Antoine; Arnaud Chevrollier; Emilie Vessières; Audrey Ayer; Marc Ferré; Dominique Bonneau; Daniel Henrion; Pascal Reynier; Vincent Procaccio

Background: The mechanism of action of resveratrol on sirtuin and mitochondrial metabolism remains elusive. Results: Resveratrol increases the mitochondrial NAD+ level by direct stimulation of complex I, leading to a SIRT3-dependent increase in substrate supplies. Conclusion: Our results link the direct stimulation by resveratrol of NADH oxidation to the SIRT3 activation. Significance: Mitochondrial NAD+/NADH ratio is a critical parameter mediating resveratrol effect on mitochondrial function. Resveratrol (RSV) has been shown to be involved in the regulation of energetic metabolism, generating increasing interest in therapeutic use. SIRT1 has been described as the main target of RSV. However, recent reports have challenged the hypothesis of its direct activation by RSV, and the signaling pathways remain elusive. Here, the effects of RSV on mitochondrial metabolism are detailed both in vivo and in vitro using murine and cellular models and isolated enzymes. We demonstrate that low RSV doses (1–5 μm) directly stimulate NADH dehydrogenases and, more specifically, mitochondrial complex I activity (EC50 ∼1 μm). In HepG2 cells, this complex I activation increases the mitochondrial NAD+/NADH ratio. This higher NAD+ level initiates a SIRT3-dependent increase in the mitochondrial substrate supply pathways (i.e. the tricarboxylic acid cycle and fatty acid oxidation). This effect is also seen in liver mitochondria of RSV-fed animals (50 mg/kg/day). We conclude that the increase in NADH oxidation by complex I is a crucial event for SIRT3 activation by RSV. Our results open up new perspectives in the understanding of the RSV signaling pathway and highlight the critical importance of RSV doses used for future clinical trials.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Notch3 Is a Major Regulator of Vascular Tone in Cerebral and Tail Resistance Arteries

E.J. Belin de Chantemèle; K. Retailleau; Frederic Pinaud; Emilie Vessières; Arnaud Bocquet; Anne-Laure Guihot; B. Lemaire; V. Domenga; C. Baufreton; Laurent Loufrani; Anne Joutel; Daniel Henrion

Objective—Notch3, a member of the evolutionary conserved Notch receptor family, is primarily expressed in vascular smooth muscle cells. Genetic studies in human and mice revealed a critical role for Notch3 in the structural integrity of distal resistance arteries by regulating arterial differentiation and postnatal maturation. Methods and Results—We investigated the role of Notch3 in vascular tone in small resistance vessels (tail and cerebral arteries) and large (carotid) arteries isolated from Notch3-deficient mice using arteriography. Passive diameter and compliance were unaltered in mutant arteries. Similarly, contractions to phenylephrine, KCl, angiotensin II, and thromboxane A2 as well as dilation to acetylcholine or sodium nitroprusside were unaffected. However, Notch3 deficiency induced a dramatic reduction in pressure-induced myogenic tone associated with a higher flow (shear stress)-mediated dilation in tail and cerebral resistance arteries only. Furthermore, RhoA activity and myosin light chain phosphorylation, measured in pressurized tail arteries, were significantly reduced in Notch3KO mice. Additionally, myogenic tone inhibition by the Rho kinase inhibitor Y27632 was attenuated in mutant tail arteries. Conclusions—Notch3 plays an important role in the control of vascular mechano-transduction, by modulating the RhoA/Rho kinase pathway, with opposite effects on myogenic tone and flow-mediated dilation in the resistance circulation.


Cardiovascular Research | 2009

Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow

Eric J. Belin de Chantemèle; Emilie Vessières; Anne Laure Guihot; Bertrand Toutain; Maud Maquignau; Laurent Loufrani; Daniel Henrion

AIMS Endothelial dysfunction in resistance arteries (RAs) leads to end-organ damage in type 2 diabetes. Remodelling of RAs in response to chronic increases in blood flow depends on the integrity of the endothelium. Since type 2 diabetes impairs endothelial sensitivity to flow and increases oxidative stress, we hypothesized that flow-induced remodelling in RAs would be impaired in diabetes. Thus, we studied the structural and functional adaptation of RAs from Zucker diabetic fatty (ZDF) and lean Zucker (LZ) rats to chronic changes in flow. METHODS AND RESULTS Mesenteric RAs were alternatively ligated so that one artery was submitted to high flow (HF) and compared with normal-flow (NF) arteries located at distance. After 3 weeks, arteries were studied in vitro (n = 10 rats per group). Arterial diameter (468 vs. 394 +/- 8 microm) and endothelial (acetylcholine)-dependent dilation (91 +/- 8 vs. 75 +/- 6% dilation) were higher in HF than in NF arteries in LZ rats. In ZDF rats, diameter (396 +/- 9 vs. 440 +/- 17 microm) and acetylcholine-mediated dilation (42 +/- 8 vs. 75 +/- 7%) were lower in HF than in NF arteries. Nevertheless, endothelial NO synthase and NADP(H) oxidase subunits (gp91, p67) expression level and superoxide production (dihydroethidium staining) were higher in HF than in NF arteries in both strains, suggesting an efficient flow-sensing process in ZDF rats. In ZDF rats, basal oxidative stress was higher compared with LZ rats: dihydroethidium staining was higher in NF and HF arteries from ZDF rats, and acetylcholine-mediated dilation was improved by an acute antioxidant (tempol) in NF and HF arteries from ZDF rats. Thus, superoxide overproduction in ZDF rats impaired NO-dependent dilation and HF remodelling. Indeed, a chronic treatment with tempol increased HF artery diameter and endothelium-dependent dilation in ZDF rats. CONCLUSION In type 2 diabetic rats, a chronic increase in blood flow failed to induce outward remodelling and to improve endothelium-dependent dilation, mainly because of superoxide overproduction.


Hypertension | 2010

Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries

Kevin Retailleau; Eric J. Belin de Chantemèle; Sébastien Chanoine; Anne Laure Guihot; Emilie Vessières; Bertrand Toutain; Sébastien Faure; Zsolt Bagi; Laurent Loufrani; Daniel Henrion

Angiotensin II has a key role in the control of resistance artery tone and local blood flow. Angiotensin II possesses 2 main receptors. Although angiotensin II type 1 receptor is well known and is involved in the vasoconstrictor and growth properties of angiotensin II, the role of the angiotensin II type 2 receptor (AT2R) remains much less understood. Although AT2R stimulation induces vasodilatation in normotensive rats, it induces vasoconstriction in pathological conditions involving oxidative stress and cyclooxygenase 2 expression. Thus, we studied the influence of cyclooxygenase 2 on AT2R-dependent tone in diabetes mellitus. Mesenteric resistance arteries were isolated from Zucker diabetic fatty (ZDF) and lean Zucker rats and studied using in vitro using wire myography. In ZDF rats, AT2R-induced dilation was lower than in lean rats (11% versus 21% dilation). Dilation in ZDF rats returned to the control (lean rats) level after acute superoxide reduction (Tempol and apocynin), cyclooxygenase 2 inhibition (NS398), or thromboxane A2 synthesis inhibition (furegrelate). Cyclooxygenase 2 expression and superoxide production were significantly increased in ZDF rat arteries compared with arteries of lean rats. After chronic treatment with Tempol, AT2R-dependent dilation was equivalent in ZDF and lean rats. Chronic treatment of ZDF rats with NS398 also restored AT2R-dependent dilation to the control (lean rats) level. Plasma thromboxane B2 (thromboxane A2 metabolite), initially high in ZDF rats, was decreased by chronic Tempol and by chronic NS398 to the level found in lean Zucker rats. Thus, in type 2 diabetic rats, superoxide and thromboxane A2 reduced AT2R-induced dilation. These findings are important to take into consideration when choosing vasoactive drugs for diabetic patients.


Microcirculation | 2009

Reactive oxygen species are necessary for high flow (shear Stress)-induced diameter enlargement of rat resistance arteries

Eric J. Belin de Chantemèle; Emilie Vessières; Odile Dumont; Anne-Laure Guihot; Bertrand Toutain; Laurent Loufrani; Daniel Henrion

Objectives: Chronic increases in blood flow induce remodeling associated with increases in diameter and endothelium‐mediated dilation. Remodeling requires cell growth and migration, which may involve reactive oxygen species (ROS). Nevertheless, the role of ROS in flow‐mediated remodeling in resistance arteries is not known. Materials and Methods: Rat mesenteric resistance arteries (MRAs) were exposed to high flow (HF) by sequentially ligating second‐order MRAs in vivo. After three weeks, arteries were collected for structural, pharmacological, and biochemical analysis. Results: In HF arteries, luminal diameter (431±12 to 553±14 μm; n=10), endothelium (acetylcholine)‐mediated vasodilatation (61±6 to 77±6% relaxation) and NAD(P)H subunit (gp91phox and p67phox) expression levels, and ROS (dihydroethydine microphotography) and peroxynitrite (3‐nitro‐tyrosine) production were higher than in normal flow arteries. Acute ROS scavenging with tempol improved acetylcholine‐dependent relaxation (92±4% relaxation), confirming that ROS are produced in HF arteries. Chronic treatment with tempol prevented the increase in diameter, reduced ROS and peroxynitrite production, and improved endothelium‐mediated relaxation in HF arteries. Thus, ROS and NO were involved in HF‐induced diameter enlargement, possibly through the formation of peroxynitrite, while ROS reduced the increase in endothelium‐dependent relaxation. Conclusions: ROS production is necessary for flow‐mediated diameter enlargement of resistance arteries. However, ROS counteract, in part, the associated improvement in endothelium‐mediated relaxation.


Vascular Pharmacology | 2012

Flow (shear stress)-mediated remodeling of resistance arteries in diabetes.

Emilie Vessières; Mohamed Lamine Freidja; Laurent Loufrani; Céline Fassot; Daniel Henrion

Shear stress due to blood flow is the most important force stimulating vascular endothelium. Acute stimulation of the endothelium by shear stress induces a vasodilatation mainly due to the release of nitric oxide (NO) among other relaxing agents. After a chronic increase in blood flow (shear stress), the endothelium triggers diameter enlargement, medial hypertrophy and improvement of arterial contractility and endothelium-mediated dilation. Shear stress-mediated outward remodeling requires an initial inflammatory response followed by the production of reactive oxygen species (ROS) and peroxinitrite anions, which activate MMPs and extracellular matrix digestion allowing diameter expansion. This outward remodeling occurs in collateral growth following occlusion of a large artery. In diabetes, an excessive ROS production is associated with the formation of advanced glycation end-products (AGEs) and the glycation of enzymes involved in vascular tone. The balance between inflammation, AGEs and ROS level determines the ability of resistance arteries to develop outward remodeling whereas AGEs and ROS contribute to decrease endothelium-mediated dilation in remodeled vessels. This review explores the interaction between ROS, AGEs and the endothelium in shear stress-mediated outward remodeling of resistance arteries in diabetes. Restoring or maintaining this remodeling is essential for an efficient blood flow in distal organs.


Journal of Hypertension | 2011

Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats

Mohamed Lamine Freidja; Emilie Vessières; Nicolas Clere; Valérie Desquiret; Anne-Laure Guihot; Bertrand Toutain; Laurent Loufrani; Alain Jardel; Vincent Procaccio; Sébastien Faure; Daniel Henrion

Background Aging is associated with reduced structural and functional adaptation to chronic changes in blood flow (shear stress) in small arteries. As heme oxygenase-1 (HO-1) is induced by hemodynamic forces in vascular smooth muscle and endothelial cells, we hypothesized that it might improve flow-dependent remodeling in aging. Method First-order mesenteric arteries from 3 and 16-month-old rats were exposed to high, low, or normal flow by alternate ligation in vivo. Rats were treated with the HO-1 inducer, cobalt protoporphyrin (CoPP, 5 mg/kg) or vehicle. 14 days later, local blood flow was measured in vivo, and arteries were studied in vitro. Results Despite an equivalent change in blood flow, diameter enlargement in the high-flow arteries was blunted in old compared to young rats and was associated with decreased endothelium-dependent relaxation to acetylcholine. In old rats, HO-1 induction with CoPP restored outward remodeling, via a paradoxical reactive oxygen species-dependent mechanism, and was associated with a Mn-superoxide dismutase (SOD) overexpression, as well as a significant reduction of mitochondrial aconitase activity, used as a biomarker for oxidative stress. The heme oxygenase activity inhibitor, Sn-protoporphyrin, and the SOD-mimetic, TEMPOL, prevented the effect of CoPP on remodeling and oxidative status in old rats. Furthermore, HO-1 induction improved endothelial function, in association with increased endothelial nitric oxide synthase protein expression and phosphorylation (Ser-1177). In low-flow arteries, inward remodeling was unaffected by aging or by CoPP. Thus, in old rats, CoPP-induced up-regulation of HO-1 restored high-flow-dependent remodeling (diameter enlargement) and improved endothelial function in mesenteric arteries. Conclusion This opens new perspectives in the treatment of ischemic diseases in aging.


Frontiers in Physiology | 2010

Cyclooxygenase-2 inhibition restored endothelium-mediated relaxation in old obese zucker rat mesenteric arteries.

Emilie Vessières; Eric J. Belin de Chantemèle; Bertrand Toutain; Anne Laure Guihot; Alain Jardel; Laurent Loufrani; Daniel Henrion

Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endothelium function in metabolic syndrome associated with aging. We used obese Zucker rats, a model of metabolic syndrome. First order mesenteric arteries were isolated from 4- and 12-month-old rats and acetylcholine (endothelium)-dependent relaxation determined using wire-myography. Endothelium-mediated relaxation, impaired in young Zucker rats (89 versus 77% maximal relaxation; lean versus Zucker), was further reduced in old Zucker rats (72 versus 51%, lean versus Zucker). The effect of the nitric oxide-synthesis inhibitor L-NAME on the relaxation was reduced in both young and old Zucker rats without change in eNOS expression level. COX inhibition (indomethacin) improved acetylcholine-mediated relaxation in old obese rats only, suggesting involvement of vasoconstrictor prostanoids. In addition, COX2 inhibition (NS398) and TxA2/PGH2 receptor blockade (SQ29548) both improved relaxation in old Zucker rat arteries. Old Zucker rats had the highest TxB2 (TxA2 metabolite) blood level associated with increased COX2 immunostaining. Chronic COX2 blockade (Celecoxib, 3 weeks) restored endothelium-dependent relaxation in old Zucker rats to the level observed in old lean rats. Thus the combination of aging and metabolic syndrome further impairs endothelium-dependent relaxation by inducing an excessive production of COX2-derived vasoconstrictor(s); possibly TxA2.


Cardiovascular Research | 2010

Cyclooxygenase-2 preserves flow-mediated remodelling in old obese Zucker rat mesenteric arteries

Eric J. Belin de Chantemèle; Emilie Vessières; Anne-Laure Guihot; Bertrand Toutain; Laurent Loufrani; Daniel Henrion

AIMS Resistance arteries have a key role in the control of local blood flow and pressure, and chronic increases in blood flow induce endothelium-dependent outward hypertrophic remodelling. The incidence of metabolic syndrome increases with age, and the combination of these two risk factors impairs endothelium integrity, in part through an inflammatory process. We hypothesized that cyclooxygenase-2 (COX2) would affect remodelling in 12-month-old obese rats compared with young rats. METHODS AND RESULTS Mesenteric arteries of obese and lean Zucker rats were alternatively ligated to generate high flow (HF) in the median artery. After 21 days, arteries were isolated for in vitro analysis. After 21 days, outward hypertrophic remodelling occurred in HF arteries in obese (498 +/- 20 vs. 443 +/- 18 mum intraluminal diameter in normal flow (NF) arteries, P < 0.01), but not in lean rats (454 +/- 17 vs. 432 +/- 14, NS; n = 12 per group). Endothelium-dependent (acetylcholine)-mediated relaxation (AMR) was lower in obese than in lean rats. AMR was reduced by NO-synthase blockade in all groups, and eNOS expression was higher in HF than in NF arteries without difference between lean and obese rats. Indomethacin further reduced AMR in HF arteries from obese rats only. Obesity increased COX2 immunostaining in mesenteric arteries. Acute COX2 inhibition (NS398) significantly reduced AMR in HF arteries from obese rats only, suggesting production of vasodilator prostanoid(s). In obese rats chronically treated with the COX2 inhibitor celecoxib, outward remodelling did not occur in HF arteries and AMR was improved without reaching the level found in lean rats. CONCLUSION COX2 preserved in part flow-mediated arterial remodelling in old obese rats. Nevertheless, this effect was not sufficient to keep endothelium-dependent relaxation to the level obtained in lean rats.

Collaboration


Dive into the Emilie Vessières's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Grimaud

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge