Emily Bruns
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Bruns.
Evolution | 2012
Mark K. Asplen; Emily Bruns; Aaron S. David; R. Ford Denison; Brendan Epstein; Matthew C. Kaiser; Joe M. Kaser; Christelle Lacroix; Emily K. Mohl; Gina Quiram; Kristina K Prescott; John Stanton-Geddes; John B. Vincent; Peter D. Wragg; Georgiana May
The concept of a trade‐off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade‐off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade‐offs in organismal interactions: (1) resource‐based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade‐off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade‐off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade‐offs, and factors that actually change the trade‐off relationship between fitness‐related traits important to organismal interactions.
BMC Evolutionary Biology | 2012
Emily Bruns; Martin L. Carson; Georgiana May
BackgroundAdaptation of pathogens to their hosts depends critically on factors affecting pathogen reproductive rate. While pathogen reproduction is the end result of an intricate interaction between host and pathogen, the relative contributions of host and pathogen genotype to variation in pathogen life history within the host are not well understood. Untangling these contributions allows us to identify traits with sufficient genetic variation for selection to act and to identify mechanisms of coevolution between pathogens and their hosts. We investigated the effects of pathogen and host genotype on three life-history components of pathogen fitness; infection efficiency, latent period, and sporulation capacity, in the oat crown rust fungus, Puccinia coronata f.sp. avenae, as it infects oats (Avena sativa).ResultsWe show that both pathogen and host genotype significantly affect total spore production but do so through their effects on different life-history stages. Pathogen genotype has the strongest effect on the early stage of infection efficiency, while host genotype most strongly affects the later life-history stages of latent period and sporulation capacity. In addition, host genotype affected the relationship between pathogen density and the later life-history traits of latent period and sporulation capacity. We did not find evidence of pathogen-by-host genotypic (GxG) interactions.ConclusionOur results illustrate mechanisms by which variation in host populations will affect the evolution of pathogen life history. Results show that different pathogen life-history stages have the potential to respond differently to selection by host or pathogen genotype and suggest mechanisms of antagonistic coevolution. Pathogen populations may adapt to host genotypes through increased infection efficiency while their plant hosts may adapt by limiting the later stages of pathogen growth and spore production within the host.
Evolution | 2014
Emily Bruns; Martin L. Carson; Georgiana May
A trade‐off between a pathogens ability to infect many hosts and its reproductive capacity on each host genotype is predicted to limit the evolution of an expanded host range, yet few empirical results provide evidence for the magnitude of such trade‐offs. Here, we test the hypothesis for a trade‐off between the number of host genotypes that a fungal pathogen can infect (host genotype range) and its reproductive capacity on susceptible plant hosts. We used strains of the oat crown rust fungus that carried widely varying numbers of virulence (avr) alleles known to determine host genotype range. We quantified total spore production and the expression of four pathogen life‐history stages: infection efficiency, time until reproduction, pustule size, and spore production per pustule. In support of the trade‐off hypothesis, we found that virulence level, the number of avr alleles per pathogen strain, was correlated with significant delays in the onset of reproduction and with smaller pustule sizes. Modeling from our results, we conclude that trade‐offs have the capacity to constrain the evolution of host genotype range in local populations. In contrast, long‐term trends in virulence level suggest that the continued deployment of resistant host lines over wide regions of the United States has generated selection for increased host genotype range.
Evolution | 2015
Emily Bruns; Michael E. Hood; Janis Antonovics
Recent theoretical work has shown that long‐lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter‐lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long‐lived organisms than in short‐lived organisms. However, the opposite may be true for the evolution of disease‐resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency‐dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short‐lived hosts. Moreover, resistance in long‐lived hosts could only be polymorphic for more costly and more extreme resistance levels than short‐lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer‐lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality‐inducing diseases, or to density‐dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life‐history traits of the host.
Molecular Ecology | 2017
Elsa Petit; Casey Silver; Amandine Cornille; Pierre Gladieux; Lisa Rosenthal; Emily Bruns; Sarah Yee; Janis Antonovics; Tatiana Giraud; Michael E. Hood
Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther‐smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host–pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host‐specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co‐occurrence within single‐host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther‐smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages.
Proceedings of the Royal Society B: Biological Sciences | 2016
Ian Miller; Emily Bruns
The evolution of separate males and females is an important evolutionary transition that has occurred multiple times in flowering plants. While empirical studies have stressed the potential importance of natural enemies and organismal interactions in the evolution of separate sexes, there has been no treatment of natural enemies in the theoretical literature. We investigated the effects of disease on the evolution of females in gynodioecious populations composed of females and hermaphrodites, where sex is determined by the interaction of cytoplasmic male sterility (CMS) and nuclear restorer genes. When females are significantly more resistant than hermaphrodites, disease drives an increase in the frequency of females and sex determination becomes nuclear, creating the pre-conditions for the evolution of separate males and females. However, when females are only moderately more resistant, disease drives changes in the frequency of CMS and restorer alleles, but has little effect on the frequency of females. We discuss our results in the context of the evolution of mating systems and cyto-nuclear epistasis.
Proceedings of the Royal Society B: Biological Sciences | 2018
Ben Ashby; Emily Bruns
Infection prior to reproduction usually carries greater fitness costs for hosts than infection later in life, suggesting selection should tend to favour juvenile resistance. Yet, juveniles are generally more susceptible than adults across a wide spectrum of host taxa. While physiological constraints and a lack of prior exposure can explain some of this pattern, studies in plants and insects suggest that hosts may trade off juvenile susceptibility against other life-history traits. However, it is unclear precisely how trade-offs shape the evolution of juvenile susceptibility. Here, we theoretically explore the evolution of juvenile susceptibility subject to trade-offs with maturation or reproduction, which could realistically occur due to resource allocation during development (e.g. prioritizing growth over immune defence). We show how host lifespan, the probability of maturation (i.e. of reaching the adult stage) and transmission mode affect the results. Our key finding is that elevated juvenile susceptibility is expected to evolve over a wide range of conditions, but should be lowest when hosts have moderate lifespans and an intermediate probability of reaching the adult stage. Our results elucidate how interactions between trade-offs and the epidemiological-demographic structure of the population can lead to the evolution of elevated juvenile susceptibility.
American Journal of Botany | 2018
Janis Antonovics; Jessica L. Abbate; Emily Bruns; Peter D. Fields; Nicole J. Forrester; Kimberly J. Gilbert; Michael E. Hood; Timothy Park; Douglas R. Taylor
PREMISE OF THE STUDY Plant pathogens that form persistent systemic infections within plants have the potential to affect multiple plant life history traits, yet we tend to focus only on visible symptoms. Anther smut of Silene latifolia caused by the fungus Microbotryum lychnidis-dioicae induces the anthers of its host to support fungal spore production instead of pollen, and the pathogen is primarily transmitted among flowering plants by pollinators. Nevertheless, most of its life cycle is spent in the asymptomatic vegetative phase, and spores falling on seedlings or nonflowering plants can also infect the host. The purpose of this study was to ask whether the fungus also had an effect on its host plant in the juvenile vegetative phase before flowering as this is important for the disease dynamics in species where infection of seedlings is commonplace. METHODS Leaf length and leaf number of inoculated and uninoculated juvenile plants were compared in greenhouse experiments, and in one experiment, disease status of the plants at flowering was determined. KEY RESULTS Inoculated plants had shorter but more leaves, and reduced root mass at the early juvenile (preflowering) stage. Some of these effects were detectable in plants that were inoculated but showed no disease symptoms at flowering. CONCLUSIONS These results show that pathogenic fungi can have endophyte-like effects even in the total absence of their typical and more charismatic symptoms, and conversely that the assessment of endophyte effects on the fitness of their hosts should include all stages of the host life cycle.
Journal of Ecology | 2017
Emily Bruns; Janis Antonovics; Valentina Carasso; Michael E. Hood
Journal of Ecology | 2017
Helen M. Alexander; Emily Bruns; Hayley Schebor; Carolyn M. Malmstrom