Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily F. Solly is active.

Publication


Featured researches published by Emily F. Solly.


Nature | 2016

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Ecology Letters | 2015

Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

Eric Allan; Peter Manning; Fabian Alt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Fabrice Grassein; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; E. Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffen-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser; Michael Werner

Abstract Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


Philosophical Transactions of the Royal Society B | 2016

Locally rare species influence grassland ecosystem multifunctionality

Santiago Soliveres; Peter Manning; Daniel Prati; Martin M. Gossner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann; Esther Pašalić

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


New Phytologist | 2014

Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons

Bernhard Ahrens; Karna Hansson; Emily F. Solly; Marion Schrumpf

We used bomb-radiocarbon and raw minirhizotron lifetimes of fine roots (< 0.5 mm in diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to test if different models are able to reconcile the apparently contradicting turnover time estimates from both techniques. We present a framework based on survival functions that is able to jointly model bomb-radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about biases of both techniques--the classification of dead roots in minirhizotrons and the use of carbon reserves to grow new roots. Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-radiocarbon and minirhizotron data. These models yielded a mean residence time of 3.80 ± 0.16 yr (mean ± SD). On average 60 ± 2% of fine roots turned over within 0.75 ± 0.10 yr, while the rest was turning over within 8.4 ± 0.2 yr. Bomb-radiocarbon and minirhizotron data alone give a biased estimate of fine-root turnover. The two-pool models allow a mechanistic interpretation for the coexistence of fast- and slow-cycling roots--suberization and branching for the serial-two-pool model and branching due to ectomycorrhizal fungi-root interactions for the parallel-two-pool model.


Science of The Total Environment | 2016

Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances

Valentin H. Klaus; Norbert Hölzel; Daniel Prati; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Falk Hänsel; Markus Fischer; Till Kleinebecker

Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.


PLOS ONE | 2017

Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters

Yu Shang; Johannes Sikorski; Michael Bonkowski; Anna Maria Fiore-Donno; Ellen Kandeler; Sven Marhan; Runa S. Boeddinghaus; Emily F. Solly; Marion Schrumpf; Ingo Schöning; Tesfaye Wubet; François Buscot; Jörg Overmann

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.


Plant and Soil | 2016

Drivers of nitrogen leaching from organic layers in Central European beech forests

Martin T. Schwarz; Sebastian Bischoff; Stefan Blaser; Steffen Boch; Fabrice Grassein; Bernhard Klarner; Barbara Schmitt; Emily F. Solly; Christian Ammer; Beate Michalzik; Peter Schall; Stefan Scheu; Ingo Schöning; Marion Schrumpf; Ernst-Detlef Schulze; Jan Siemens; Wolfgang Wilcke

Background and Aims The response of forest ecosystems to continuous nitrogen (N) deposition is still uncertain. We investigated imports and exports of dissolved N from mull-type organic layers to identify the controls of N leaching in Central European beech forests under continuous N deposition. Methods Dissolved N fluxes with through fall and through mull-type organic layers (litter leachate) were measured continuously in 12 beech forests on calcareous soil in two regions in Germany over three consecutive growing seasons. Results Mean growing season net (i.e. litter leachate – throughfall flux) fluxes of total dissolved N (TDN) from the organic layer were low (2.3 ± 5.6 kg ha⁻¹) but varied widely from 12.9 kg ha⁻¹ to–8.3kgha⁻¹. The small increase of dissolved N fluxes during the water passage through mull-type organic layers suggested that high turnover rates coincided with high microbial N assimilation and plant N uptake. Stand basal area had a positive feedback on N fluxes by providing litter for soil organic matter formation. Plant diversity, especially herb diversity, reduced dissolved N fluxes. Soil fauna biomass increased NO−3 -N fluxes with litter leachate by stimulating mineralization. Microbial biomass measures were not related to dissolved N fluxes. Conclusions Our results show that dissolved N exports from organic layers contain significant amounts of throughfall-derived N (mainly NO−3 -N) that flushes through the organic layer but also highlight that N leaching from organic layers is driven by the complex interplay of plants, animals and microbes. Furthermore, diverse understories reduce N leaching from Central European beech forests.


Nature Communications | 2018

Unravelling the age of fine roots of temperate and boreal forests

Emily F. Solly; Ivano Brunner; Heljä-Sisko Helmisaari; Claude Herzog; Jaana Leppälammi-Kujansuu; Ingo Schöning; Marion Schrumpf; Fritz H. Schweingruber; Susan E. Trumbore; Frank Hagedorn

Fine roots support the water and nutrient demands of plants and supply carbon to soils. Quantifying turnover times of fine roots is crucial for modeling soil organic matter dynamics and constraining carbon cycle–climate feedbacks. Here we challenge widely used isotope-based estimates suggesting the turnover of fine roots of trees to be as slow as a decade. By recording annual growth rings of roots from woody plant species, we show that mean chronological ages of fine roots vary from <1 to 12 years in temperate, boreal and sub-arctic forests. Radiocarbon dating reveals the same roots to be constructed from 10 ± 1 year (mean ± 1 SE) older carbon. This dramatic difference provides evidence for a time lag between plant carbon assimilation and production of fine roots, most likely due to internal carbon storage. The high root turnover documented here implies greater carbon inputs into soils than previously thought which has wide-ranging implications for quantifying ecosystem carbon allocation.Fine-root lifetimes and carbon inputs from roots into soil impact carbon cycle-climate feedbacks yet remain poorly constrained. Here, using annual-growth rings and radiocarbon dating, the authors show that the chronological age of fine roots is substantially younger than that of the carbon used for their growth.


Journal of Applied Ecology | 2018

Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships

Fons van der Plas; Eric Allan; Markus Fischer; Fabian Alt; Hartmut Arndt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; H. Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffan-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser

1.Rapid growth of the worlds human population has increased pressure on landscapes to deliver high levels of multiple ecosystem services, including food and fibre production, carbon storage, biodiversity conservation and recreation. However, we currently lack general principles describing how to achieve this landscape multifunctionality. 2.We combine theoretical simulations and empirical data on 14 ecosystem services measured across 150 grasslands in three German regions. In doing so, we investigate the circumstances under which spatial heterogeneity in a driver of ecosystem functioning (an ‘ecosystem‐driver,’ e.g. the presence of keystone species, land‐use intensification or habitat types) increases landscape‐level ecosystem multifunctionality. 3.Simulations based on theoretical data demonstrated that relationships between heterogeneity and landscape multifunctionality are highly variable and can range from non‐significant to strongly positive. Despite this variability, we could identify criteria under which heterogeneity‐landscape multifunctionality relationships were most strongly positive: this happened when multiple ecosystem services responded contrastingly (both positively and negatively) to an ecosystem‐driver. 4.These findings were confirmed using empirical data, which showed that heterogeneity in land‐use intensity promoted landscape multifunctionality in cases where functions with both positive (e.g. plant biomass) and negative (e.g. flower cover) responses to land use intensification were included. For example, the simultaneous provisioning of ecosystem functions related to forage production (generally profiting from land‐use intensification), biodiversity conservation and recreation (generally decreasing with land‐use intensification) was highest in landscapes consisting of sites varying in land‐use intensity. 5.Synthesis and applications. Our findings show that there are general principles governing landscape multifunctionality. A knowledge of these principles may support land management decisions. For example, knowledge of relationships between ecosystem services and their drivers, such as land use type, can help estimate the consequences of increasing or decreasing heterogeneity for landscape‐level ecosystem service supply, although interactions between landscape units (e.g. the movement of pollinators) must also be considered.


Plant and Soil | 2014

Factors controlling decomposition rates of fine root litter in temperate forests and grasslands

Emily F. Solly; Ingo Schöning; Steffen Boch; Ellen Kandeler; Sven Marhan; Beate Michalzik; Jörg Müller; Jakob Zscheischler; Susan E. Trumbore; Marion Schrumpf

Collaboration


Dive into the Emily F. Solly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabian Alt

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge