Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marion Schrumpf is active.

Publication


Featured researches published by Marion Schrumpf.


PLOS ONE | 2011

Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.

Heiko Nacke; Andrea Thürmer; Antje Wollherr; Christiane Will; Ladislav Hodač; Nadine Herold; Ingo Schöning; Marion Schrumpf; Rolf Daniel

Background Soil bacteria are important drivers for nearly all biogeochemical cycles in terrestrial ecosystems and participate in most nutrient transformations in soil. In contrast to the importance of soil bacteria for ecosystem functioning, we understand little how different management types affect the soil bacterial community composition. Methodology/Principal Findings We used pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to identify changes in bacterial diversity and community structure in nine forest and nine grassland soils from the Schwäbische Alb that covered six different management types. The dataset comprised 598,962 sequences that were affiliated to the domain Bacteria. The number of classified sequences per sample ranged from 23,515 to 39,259. Bacterial diversity was more phylum rich in grassland soils than in forest soils. The dominant taxonomic groups across all samples (>1% of all sequences) were Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Firmicutes. Significant variations in relative abundances of bacterial phyla and proteobacterial classes, including Actinobacteria, Firmicutes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes and Alphaproteobacteria, between the land use types forest and grassland were observed. At the genus level, significant differences were also recorded for the dominant genera Phenylobacter, Bacillus, Kribbella, Streptomyces, Agromyces, and Defluviicoccus. In addition, soil bacterial community structure showed significant differences between beech and spruce forest soils. The relative abundances of bacterial groups at different taxonomic levels correlated with soil pH, but little or no relationships to management type and other soil properties were found. Conclusions/Significance Soil bacterial community composition and diversity of the six analyzed management types showed significant differences between the land use types grassland and forest. Furthermore, bacterial community structure was largely driven by tree species and soil pH.


Applied and Environmental Microbiology | 2010

Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

Christiane Will; Andrea Thürmer; Antje Wollherr; Heiko Nacke; Nadine Herold; Marion Schrumpf; Jessica L. M. Gutknecht; Tesfaye Wubet; François Buscot; Rolf Daniel

ABSTRACT The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass.


Nature | 2016

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Ecology Letters | 2015

Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

Eric Allan; Peter Manning; Fabian Alt; Julia Binkenstein; Stefan Blaser; Nico Blüthgen; Stefan Böhm; Fabrice Grassein; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; E. Kathryn Morris; Yvonne Oelmann; Daniel Prati; Swen C. Renner; Matthias C. Rillig; Martin Schaefer; Michael Schloter; Barbara Schmitt; Ingo Schöning; Marion Schrumpf; Emily F. Solly; Elisabeth Sorkau; Juliane Steckel; Ingolf Steffen-Dewenter; Barbara Stempfhuber; Marco Tschapka; Christiane N. Weiner; Wolfgang W. Weisser; Michael Werner

Abstract Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.


PLOS ONE | 2012

General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

Klaus Birkhofer; Ingo Schöning; Fabian Alt; Nadine Herold; Bernhard Klarner; Mark Maraun; Sven Marhan; Yvonne Oelmann; Tesfaye Wubet; Andrey Yurkov; Dominik Begerow; Doreen Berner; François Buscot; Rolf Daniel; Tim Diekötter; Roswitha B. Ehnes; Georgia Erdmann; Christiane Fischer; Bärbel U. Foesel; Janine Groh; Jessica L. M. Gutknecht; Ellen Kandeler; Christa Lang; Gertrud Lohaus; Annabel Meyer; Heiko Nacke; Astrid Näther; Jörg Overmann; Andrea Polle; Melanie M. Pollierer

Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.


Scientific Reports | 2016

Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

Kristin Kaiser; Bernd Wemheuer; Vera Korolkow; Franziska Wemheuer; Heiko Nacke; Ingo Schöning; Marion Schrumpf; Rolf Daniel

Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.


Philosophical Transactions of the Royal Society B | 2016

Locally rare species influence grassland ecosystem multifunctionality

Santiago Soliveres; Peter Manning; Daniel Prati; Martin M. Gossner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann; Esther Pašalić

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


Microbial Ecology | 2015

pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils

Barbara Stempfhuber; Marion Engel; Doreen Fischer; Ganna Neskovic-Prit; Tesfaye Wubet; Ingo Schöning; Cécile Gubry-Rangin; Susanne Kublik; Brigitte Schloter-Hai; Thomas Rattei; Gerhard Welzl; Graeme W. Nicol; Marion Schrumpf; François Buscot; James I. Prosser; Michael Schloter

In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers’ amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.


Biogeochemistry | 2014

Controls on soil carbon storage and turnover in German landscapes

Nadine Herold; Ingo Schöning; Beate Michalzik; Susan E. Trumbore; Marion Schrumpf

Soil organic carbon (OC) storage across regions is influenced by climate and parent materials, which determine soil properties like clay content and mineralogy. Within homogeneous soil regions, land use and management practices are further important controls for soil OC contents and turnover. Here, we studied the impact of study region, land use (forest, grassland), forest management (spruce and beech forest under age-class management, unmanaged beech forest), and grassland management (meadow, mown pasture, unmown pasture) on stocks and turnover (based on Δ14C values) of soil OC in density frations of topsoil horizons. Samples were taken from 36 plots in the regions Hainich–Dün (HAI) and the Schwäbische Alb (ALB) in Germany. They were separated into two light fractions (free light fraction (LF1), occluded light fraction (LF2)) and the mineral-associated organic matter (MOM) fraction using sodium polytungstate with a density of 1.6 g cm−3. Overall most soil OC was stored in the MOM fraction (73%). Soil OC concentrations and stocks in the MOM fraction differed between study regions, probably due to larger amounts of pedogenic Al- and Fe-oxides in the ALB than in the HAI region. Within each region, forest soils stored significantly higher proportions of total OC in the two LF (33±1.9 %) than grassland soils (20±2.3 %). Different management of forests and grasslands affected the C:N ratio of density fractions, but not OC storage. While modelled soil OC turnover in the MOM was longest of all fractions, all fractions had average Δ14C values above atmospheric values, suggesting a significant fast-cycling component in all of them. Different from stocks, turnover of OC in the MOM fraction were not affected by study region or contents of pedogenic oxides. Radiocarbon contents in the LF were higher for forest than for grassland sites, indicating faster turnover of OC at grassland sites. However, some of the observed difference could originate from different average lifetimes of roots in forests and grasslands. Applying different lag-times for OC input for forests and grasslands significantly reduced the differences in modelled turnover times. Lower Δ14C values of mown pastures than pasture soils in both regions suggest a management effect on soil C turnover in grasslands.We conclude that OC storage in the MOM of topsoil layers is more affected by regional differences in soil texture and mineralogy than by land use and management, while its turnover could not be explained with the studied soil properties. Soil OC storage and turnover in the two LFs is influenced by land use (forest or grassland) and management, but ecosystem specific lag-times have to be considered for modelling OC turnover in these fractions.


Archive | 2009

Determination of soil carbon stocks and changes

Mirco Rodeghiero; Andreas Heinemeyer; Marion Schrumpf; Patricia H. Bellamy

INTRODUCTION Soil carbon pools and the global carbon cycle In terrestrial ecosystems soils represent the major reservoir of organic carbon (Table 4.1), but with large and yet unquantified uncertainties in their estimates (mainly due to low soil sample numbers used for global up-scaling and assumptions on mean soil depths). At the global level, the soil organic matter (SOM) pool (estimated to 1 m depth) contains about 1580 Pg of carbon (Pg = 10 15 g), about 610 Pg are stored in the vegetation and about 750 Pg are present in the atmosphere (Schimel, 1995). Carbon is found in soils both in organic and inorganic forms (Table 4.2). Organic carbon is commonly classified into three ‘arbitrary’ pools, mostly for modelling purposes (such as in CENTURY), i.e. fast, slow and passive reflecting the rate of turnover. However, it is difficult to relate these pools to soil carbon fractions (see Section 4.1.5). The total amount of carbonate carbon to 1 m depth is estimated at 695–748 Pg carbon (Batjes, 1996). About one third of organic soil carbon occurs in forests and another third in grasslands and savannas, the rest in wetlands, croplands and other biomes (Janzen, 2004). The global soil organic carbon map (Fig. 4.1, ISLSCP II; ORNL DAAC, http://daac.ornl.gov/) shows the areas of high soil organic carbon predominantly in cold boreal (e.g. Northern Canada) and warm and humid tropical regions (e.g. South-East Asia), reflecting areas of deep organic soils (i.e. peatlands).

Collaboration


Dive into the Marion Schrumpf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan C. Axmacher

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Buscot

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Tesfaye Wubet

German Center for Integrative Biodiversity Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge