Emily Kim
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Kim.
Cell | 1995
Ben Z. Stanger; Philip Leder; Tae-Ho Lee; Emily Kim; Brian Seed
Ligation of the extracellular domain of the cell surface receptor Fas/APO-1 (CD95) elicits a characteristic programmed death response in susceptible cells. Using a genetic selection based on protein-protein interaction in yeast, we have identified two gene products that associate with the intracellular domain of Fas: Fas itself, and a novel 74 kDa protein we have named RIP, for receptor interacting protein. RIP also interacts weakly with the p55 tumor necrosis factor receptor (TNFR1) intracellular domain, but not with a mutant version of Fas corresponding to the murine lprcg mutation. RIP contains an N-terminal region with homology to protein kinases and a C-terminal region containing a cytoplasmic motif (death domain) present in the Fas and TNFR1 intracellular domains. Transient overexpression of RIP causes transfected cells to undergo the morphological changes characteristic of apoptosis. Taken together, these properties indicate that RIP is a novel form of apoptosis-inducing protein.
Journal of Biological Chemistry | 1999
Emily Kim; Thierry Arnould; Lorenz Sellin; Thomas Benzing; Melinda J. Fan; Wolfram Grüning; Sergei Y. Sokol; Iain A. Drummond; Gerd Walz
Two distinct signaling pathways, involving Wnt signaling and polycystin, have been found to be critical for normal kidney development. Renal tubulogenesis requires the presence of certain Wnt proteins, whereas mutations in polycystin impede the terminal differentiation of renal tubular epithelial cells, causing the development of large cystic kidneys that characterize autosomal dominant polycystic kidney disease. Polycystin is an integral membrane protein, consisting of several extracellular motifs indicative of cell-cell and cell-matrix interactions, coupled through multiple transmembrane domains to a functionally active cytoplasmic domain. We report here that expression of the C-terminal cytoplasmic domain of polycystin stabilizes soluble endogenous β-catenin and stimulates TCF-dependent gene transcription in human embryonic kidney cells. Microinjection of the polycystin C-terminal cytoplasmic domain induces dorsalization in zebrafish. Our findings suggest that polycystin has the capacity to modulate Wnt signaling during renal development.
The EMBO Journal | 2005
Michael Köttgen; Thomas Benzing; Thomas Simmen; Robert Tauber; Björn Buchholz; Sylvain F. Feliciangeli; Tobias B. Huber; Bernhard Schermer; Albrecht Kramer-Zucker; Katja Höpker; Katia Carmine Simmen; Christoph Carl Tschucke; Richard Sandford; Emily Kim; Gary Thomas; Gerd Walz
The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin‐2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin‐2 functions as a calcium‐permeable nonselective cation channel; however, it is disputed whether polycystin‐2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin‐2 are directed by phosphofurin acidic cluster sorting protein (PACS)‐1 and PACS‐2, two adaptor proteins that recognize an acidic cluster in the carboxy‐terminal domain of polycystin‐2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin‐2 by the protein kinase casein kinase 2, required for the routing of polycystin‐2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin‐2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster‐containing ion channels to distinct subcellular compartments.
Journal of Biological Chemistry | 1998
Thierry Arnould; Emily Kim; Leonidas Tsiokas; Friederike Jochimsen; Wolfram Grüning; James Chang; Gerd Walz
Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disorder that accounts for 8–10% of end stage renal disease. PKD1, one of two recently isolated ADPKD gene products, has been implicated in cell-cell and cell-matrix interactions. However, the signaling pathway of PKD1 remains undefined. We found that the C-terminal 226 amino acids of PKD1 transactivate an AP-1 promoter construct in human embryonic kidney cells (293T). PKD1-induced transcription is specific for AP-1; promoter constructs containing cAMP response element-binding protein, c-Fos, c-Myc, or NFκB-binding sites are unaffected by PKD1. In vitro kinase assays revealed that PKD1 triggers the activation of c-Jun N-terminal kinase (JNK), but not of mitogen-activated protein kinases p38 or p44. Dominant-negative Rac-1 and Cdc42 mutations abrogated PKD1-mediated JNK and AP-1 activation, suggesting a critical role for small GTP-binding proteins in PKD1-mediated signaling. Several protein kinase C (PKC) inhibitors decreased PKD1-mediated AP-1 activation. Conversely, expression of the C-terminal domain of PKD1 increased PKC activity in 293T cells. A dominant-negative PKC α, but not a dominant-negative PKC β or δ, abrogated PKD1-mediated AP-1 activation. These findings indicate that small GTP-binding proteins and PKC α mediate PKD1-induced JNK/AP-1 activation, together comprising a signaling cascade that may regulate renal tubulogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kassiani Skouloudaki; Michael Puetz; Matias Simons; Jean-Remy Courbard; Christopher Boehlke; Björn Hartleben; Christina Engel; Marcus J. Moeller; Christoph Englert; Frank Bollig; Tobias Schäfer; Marek Mlodzik; Tobias B. Huber; E. Wolfgang Kuehn; Emily Kim; Albrecht Kramer-Zucker; Gerd Walz
Spatial organization of cells and their appendages is controlled by the planar cell polarity pathway, a signaling cascade initiated by the protocadherin Fat in Drosophila. Vertebrates express 4 Fat molecules, Fat1–4. We found that depletion of Fat1 caused cyst formation in the zebrafish pronephros. Knockdown of the PDZ domain containing the adaptor protein Scribble intensified the cyst-promoting phenotype of Fat1 depletion, suggesting that Fat1 and Scribble act in overlapping signaling cascades during zebrafish pronephros development. Supporting the genetic interaction with Fat1, Scribble recognized the PDZ-binding site of Fat1. Depletion of Yes-associated protein 1 (YAP1), a transcriptional co-activator inhibited by Hippo signaling, ameliorated the cyst formation in Fat1-deficient zebrafish, whereas Scribble inhibited the YAP1-induced cyst formation. Thus, reduced Hippo signaling and subsequent YAP1 disinhibition seem to play a role in the development of pronephric cysts after depletion of Fat1 or Scribble. We hypothesize that Hippo signaling is required for normal pronephros development in zebrafish and that Scribble is a candidate link between Fat and the Hippo signaling cascade in vertebrates.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Thomas Benzing; Peter Gerke; Katja Höpker; Friedhelm Hildebrandt; Emily Kim; Gerd Walz
Juvenile nephronophthisis type 1 is caused by mutations of NPHP1, the gene encoding for nephrocystin. The function of nephrocystin is presently unknown, but the presence of a Src homology 3 domain and its recently described interaction with p130Cas suggest that nephrocystin is part of the focal adhesion signaling complex. We generated a nephrocystin-specific antiserum and analyzed the interaction of native nephrocystin with endogenous proteins. Immunoprecipitation of nephrocystin revealed that nephrocystin forms protein complexes with p130Cas, proline-rich tyrosine kinase 2 (Pyk2), and tensin, indicating that these proteins participate in a common signaling pathway. Expression of nephrocystin resulted in phosphorylation of Pyk2 on tyrosine 402 as well as activation of downstream mitogen-activated protein kinases, such as ERK1 and ERK2. Our findings suggest that nephrocystin helps to recruit Pyk2 to cell matrix adhesions, thereby initiating phosphorylation of Pyk2 and Pyk2-dependent signaling. A lack of functional nephrocystin may compromise Pyk2 signaling in a subset of renal epithelial cells.
Nature Medicine | 1999
Thomas Benzing; Ralf Brandes; Lorenz Sellin; Bernhard Schermer; Stewart H. Lecker; Gerd Walz; Emily Kim
The central nervous dysfunctions of lethargy, fever and anorexia are manifestations of sepsis that seem to be mediated by increased cytokine production. Here we demonstrate that tumor necrosis factor (TNF)-α, an essential mediator of endotoxin-induced sepsis, prevents the proteasome-dependent degradation of RGS7, a regulator of G-protein signaling. The stabilization of RGS7 by TNF-α requires activation of the stress-activated protein kinase p38 and the presence of candidate mitogen-activated protein kinase phosphorylation sites. In vivo, RGS7 is rapidly upregulated in mouse brain after exposure to either endotoxin or TNF-α, a response that is nearly abrogated in mice lacking TNF receptor 1. Our findings indicate that TNF-mediated upregulation of RGS7 may contribute to sepsis-induced changes in central nervous function.
Molecular and Cellular Biology | 1999
Thierry Arnould; Lorenz Sellin; Thomas Benzing; Leonidas Tsiokas; Herbert T. Cohen; Emily Kim; Gerd Walz
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is caused by germ line mutations in at least three ADPKD genes. Two recently isolated ADPKD genes, PKD1 and PKD2, encode integral membrane proteins of unknown function. We found that PKD2 upregulated AP-1-dependent transcription in human embryonic kidney 293T cells. The PKD2-mediated AP-1 activity was dependent upon activation of the mitogen-activated protein kinases p38 and JNK1 and protein kinase C (PKC) ɛ, a calcium-independent PKC isozyme. Staurosporine, but not the calcium chelator BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetate], inhibited PKD2-mediated signaling, consistent with the involvement of a calcium-independent PKC isozyme. Coexpression of PKD2 with the interacting C terminus of PKD1 dramatically augmented PKD2-mediated AP-1 activation. The synergistic signaling between PKD1 and PKD2 involved the activation of two distinct PKC isozymes, PKC α and PKC ɛ, respectively. Our findings are consistent with others that support a functional connection between PKD1 and PKD2 involving multiple signaling pathways that converge to induce AP-1 activity, a transcription factor that regulates different cellular programs such as proliferation, differentiation, and apoptosis. Activation of these signaling cascades may promote the full maturation of developing tubular epithelial cells, while inactivation of these signaling cascades may impair terminal differentiation and facilitate the development of renal tubular cysts.
Nature Medicine | 2007
Emily Kim; Gerd Walz
An inherited form of kidney disease results from defects in the cilium. Mouse knockout experiments now explore how cilia help guide the organ into the right shape—and hint that these tiny antennae may also help regulate food intake (pages 1490–1495).
Proceedings of the National Academy of Sciences of the United States of America | 2009
Athina Ganner; Soeren S. Lienkamp; Tobias Schäfer; Daniel Romaker; Tomasz Wegierski; Tae Joo Park; Stefan Spreitzer; Matias Simons; Joachim Gloy; Emily Kim; John B. Wallingford; Gerd Walz
Planar cell polarity signaling controls a variety of polarized cell behaviors. In multiciliated Xenopus epidermal cells, recruitment of Dishevelled (Dvl) to the basal body and its localization to the center of the ciliary rootlet are required to correctly position the motile cilia. We now report that the anaphase-promoting complex (APC/C) recognizes a D-box motif of Dvl and ubiquitylates Dvl on a highly conserved lysine residue. Inhibition of APC/C function by knockdown of the ANAPC2 subunit disrupts the polarity of motile cilia and alters the directionality of the fluid movement along the epidermis of the Xenopus embryo. Our results suggest that the APC/C activity enables cilia to correctly polarize in Xenopus epidermal cells.