Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily M. Standen is active.

Publication


Featured researches published by Emily M. Standen.


The Journal of Experimental Biology | 2005

Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering.

Emily M. Standen; George V. Lauder

SUMMARY Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s–1) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming (0.5–2.5 TL s–1, where TL=total length) and during slow speed maneuvers (0.5 TL s–1). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TL s–1 and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming, with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip) curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.


The Journal of Experimental Biology | 2007

Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis)

Emily M. Standen; George V. Lauder

SUMMARY Recent kinematic and hydrodynamic studies on fish median fins have shown that dorsal fins actively produce jets with large lateral forces. Because of the location of dorsal fins above the fishs rolling axis, these lateral forces, if unchecked, would cause fish to roll. In this paper we examine the hydrodynamics of trout anal fin function and hypothesize that anal fins, located below the fishs rolling axis, produce similar jets to the dorsal fin and help balance rolling torques during swimming. We simultaneously quantify the wake generated by dorsal and anal fins in brook trout by swimming fish in two horizontal light sheets filmed by two synchronized high speed cameras during steady swimming and manoeuvring. Six major conclusions emerge from these experiments. First, anal fins produce lateral jets to the same side as dorsal fins, confirming the hypothesis that anal fins produce fluid jets that balance those produced by dorsal fins. Second, in contrast to previous work on sunfish, neither dorsal nor anal fins produce significant thrust during steady swimming; flow leaves the dorsal and anal fins in the form of a shear layer that rolls up into vortices similar to those seen in steady swimming of eels. Third, dorsal and anal fin lateral jets are more coincident in time than would be predicted from simple kinematic expectations; shape, heave and pitch differences between fins, and incident flow conditions may account for the differences in timing of jet shedding. Fourth, relative force and torque magnitudes of the anal fin are larger than those of the dorsal fin; force differences may be due primarily to a larger span and a more squarely shaped trailing edge of the anal fin compared to the dorsal fin; torque differences are also strongly influenced by the location of each fin relative to the fishs centre of mass. Fifth, flow is actively modified by dorsal and anal fins resulting in complex flow patterns surrounding the caudal fin. The caudal fin does not encounter free-stream flow, but rather moves through incident flow greatly altered by the action of dorsal and anal fins. Sixth, trout anal fin function differs from dorsal fin function; although dorsal and anal fins appear to cooperate functionally, there are complex interactions between other fins and free stream perturbations that require independent dorsal and anal fin motion and torque production to maintain control of body position.


The Journal of Experimental Biology | 2004

Escape manoeuvres in the spiny dogfish (Squalus acanthias)

Paolo Domenici; Emily M. Standen; Robert P. Levine

SUMMARY The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023 deg. s-1. We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023 deg. s-1) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593 deg. s-1) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility.


The Journal of Experimental Biology | 2008

Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes

Eric Tytell; Emily M. Standen; George V. Lauder

SUMMARY Fish swimming has often been simplified into the motions of a two-dimensional slice through the horizontal midline, as though fishes live in a flat world devoid of a third dimension. While fish bodies do undulate primarily horizontally, this motion has important three-dimensional components, and fish fins can move in a complex three-dimensional manner. Recent results suggest that an understanding of the three-dimensional body shape and fin motions is vital for explaining the mechanics of swimming, and that two-dimensional representations of fish locomotion are misleading. In this study, we first examine axial swimming from the two-dimensional viewpoint, detailing the limitations of this view. Then we present data on the kinematics and hydrodynamics of the dorsal fin, the anal fin and the caudal fin during steady swimming and maneuvering in brook trout, Salvelinus fontinalis, bluegill sunfish, Lepomis macrochirus, and yellow perch, Perca flavescens. These fishes actively move the dorsal and anal fins during swimming, resulting in curvature along both anterio-posterior and dorso-ventral axes. The momentum imparted to the fluid by these fins comprises a substantial portion of total swimming force, adding to thrust and contributing to roll stability. While swimming, the caudal fin also actively curves dorso-ventrally, producing vortices separately from both its upper and lower lobes. This functional separation of the lobes may allow additional control of three-dimensional orientation, but probably reduces swimming efficiency. In contrast, fish may boost the caudal fins efficiency by taking advantage of the flow from the dorsal and anal fins as it interacts with the flow around the caudal fin itself. During maneuvering, fish readily use their fins outside of the normal planes of motion. For example, the dorsal fin can flick laterally, orienting its surface perpendicular to the body, to help in turning and braking. These data demonstrate that, while fish do move primarily in the horizontal plane, neither their bodies nor their motions can accurately be simplified in a two-dimensional representation. To begin to appreciate the functional consequences of the diversity of fish body shapes and locomotor strategies, one must escape Flatland to examine all three dimensions.


The Journal of Experimental Biology | 2012

Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.

Brad A. Chadwell; Emily M. Standen; George V. Lauder; Miriam A. Ashley-Ross

SUMMARY The fast-start escape response is critically important to avoid predation, and axial movements driving it have been studied intensively. Large median dorsal and anal fins located near the tail have been hypothesized to increase acceleration away from the threat, yet the contribution of flexible median fins remains undescribed. To investigate the role of median fins, C-start escape responses of bluegill sunfish (Lepomis macrochirus) were recorded by three high-speed, high-resolution cameras at 500 frames s−1 and the 3-D kinematics of individual dorsal and anal fin rays were analyzed. Movement and orientation of the fin rays relative to the body axis were calculated throughout the duration of the C-start. We found that: (1) timing and magnitude of angular displacement varied among fin rays based on position within the fin and (2) kinematic patterns support the prediction that fin rays are actively resisting hydrodynamic forces and transmitting momentum into the water. We suggest that regions within the fins have different roles. Anterior regions of the fins are rapidly elevated to increase the volume of water that the fish may interact with and transmit force into, thus generating greater total momentum. The movement pattern of all the fin rays creates traveling waves that move posteriorly along the length of the fin, moving water as they do so. Flexible posterior regions ultimately act to accelerate this water towards the tail, potentially interacting with vortices generated by the caudal fin during the C-start. Despite their simple appearance, median fins are highly complex and versatile control surfaces that modulate locomotor performance.


The Journal of Experimental Biology | 2012

Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature.

Brad A. Chadwell; Emily M. Standen; George V. Lauder; Miriam A. Ashley-Ross

SUMMARY Although kinematic analysis of individual fin rays provides valuable insight into the contribution of median fins to C-start performance, it paints an incomplete picture of the complex movements and deformation of the flexible fin surface. To expand our analysis of median fin function during the escape response of bluegill sunfish (Lepomis macrochirus), patterns of spanwise and chordwise curvature of the soft dorsal and anal fin surfaces were examined from the same video sequences previously used in analysis of fin-ray movement and orientation. We found that both the span and chord undergo undulation, starting in the anterior region of either fin. Initiated early in Stage 1 of the C-start, the undulation travels in a postero-distal direction, reaching the trailing edge of the fins during early Stage 2. Maximum spanwise curvature typically occurred among the more flexible posterior fin rays, though there was no consistent correlation between maximum curvature and fin-ray position. Undulatory patterns suggest different mechanisms of action for the fin regions. In the anterior fin region, where the fin rays are oriented dorsoventrally, undulation is directed primarily chordwise, initiating a transfer of momentum into the water to overcome the inertia of the flow and direct the water posteriorly. Within the posterior region, where the fin rays are oriented caudally, undulation is predominantly directed spanwise; thus, the posterior fin region acts to ultimately accelerate this water towards the tail to increase thrust forces. Treatment of median fins as appendages with uniform properties does not do justice to their complexity and effectiveness as control surfaces.


The Journal of Experimental Biology | 2017

Phenotypic plasticity of muscle fiber type in the pectoral fins of Polypterus senegalus reared in a terrestrial environment

Trina Y. Du; Emily M. Standen

ABSTRACT Muscle fiber types in the pectoral fins of fishes have rarely been examined, despite their morphological and functional diversity. Here, we describe the distribution of fast and slow muscle fibers in the pectoral fins of Polypterus senegalus, an amphibious, basal actinopterygian. Each of the four muscle groups examined using mATPase staining showed distinct fiber-type regionalization. Comparison between fish raised in aquatic and terrestrial environments revealed terrestrially reared fish possess 28% more fast muscle compared with aquatically reared fish. The pattern of proximal–distal variation in the abductors differed, with a relative decrease in fast muscle fibers near the pectoral girdle in aquatic fish compared with an increase in terrestrial fish. Terrestrially reared fish also possess a greater proportion of very small diameter fibers, suggesting that they undergo more growth via hyperplasia. These observations may be a further example of adaptive plasticity in Polypterus, allowing for greater bursts of power during terrestrial locomotion. Summary: Polypterus senegalus raised in terrestrial environments develop a greater proportion of fast-contracting muscle fibers in their pectoral fins compared with aquatically reared fish.


The Journal of Experimental Biology | 2018

Fin and body neuromuscular coordination changes during walking and swimming in Polypterus senegalus

Kathleen L. Foster; Misha Dhuper; Emily M. Standen

ABSTRACT The ability to modulate the function of muscle is integral to an animals ability to function effectively in the face of widely disparate challenges. This modulation of function can manifest through short-term changes in neuromuscular control, but also through long-term changes in force profiles, fatiguability and architecture. However, the relative extent to which shorter-term modulation and longer-term plasticity govern locomotor flexibility remains unclear. Here, we obtain simultaneously recorded kinematic and muscle activity data of fin and body musculature of an amphibious fish, Polypterus senegalus. After examining swimming and walking behaviour in aquatically raised individuals, we show that walking behaviour is characterized by greater absolute duration of muscle activity in most muscles when compared with swimming, but that the magnitude of recruitment during walking is only increased in the secondary bursts of fin muscle and in the primary burst of the mid-body point. This localized increase in intensity suggests that walking in P. senegalus is powered in a few key locations on the fish, contrasting with the more distributed, low intensity muscle force that characterizes the stroke cycle during swimming. Finally, the increased intensity in secondary, but not primary, bursts of the fin muscles when walking probably underscores the importance of antagonistic muscle activity to prevent fin collapse, add stabilization and increase body support. Understanding the principles that underlie the flexibility of muscle function can provide key insights into the sources of animal functional and behavioural diversity. Summary: Polypterus senegalus use intermittent high-intensity activity of fin and mid-body muscles during walking compared with more constant, moderate-intensity activity of all muscles during swimming.


Journal of Biomechanics | 2006

Escaping flatland: Three-dimensional kinematics and hydrodynamics of median fins in fishes

Eric Tytell; Emily M. Standen; George V. Lauder

In the classic book Flatland, E. A. Abbott describes a world of two dimensions, a world in which the inhabitants live in ignorance of the third dimension, a world in which it is impossible to distinguish circles from squares, and squares from pentagons – everything looks like a line in the two-dimensional world of Flatland (Abbott, 1899). Then, a disruptive Sphere enters to make inhabitants aware of a third dimension, causing consternation and ultimately sending the narrator to jail. The Flatland of Abbott’s book is an appropriate metaphor for much of the current literature on undulatory locomotion in fishes, which is largely devoted to analyses of fish swimming in the horizontal (two-dimensional, 2D) plane. This 2D world has, so far, been an appropriate place to conduct our studies of fish locomotion: fewer cameras are needed to acquire data, analyses are simpler, and theoretical models can be generated more easily (e.g. Schultz and Webb, 2002). But fish are three-dimensional (3D), with prominent median and paired fins that project into the water, and with clearly defined edges that demark the dorsal, ventral and caudal body surface. Although thinking in three dimensions may complicate our lives, it is nonetheless a critical next step that experimental and computational analyses of fish undulatory locomotion are only now starting to grapple with. Like the residents of Flatland, we must learn to deal with the 3D world. The 3D nature of fish functional design is clearly seen in the enormous diversity of body shapes and swimming modes in fishes, but the precise advantage of one shape or mode over another is less clear. Generalizations from hydrodynamic theories combined with observations of typical swimming behavior have led to much speculation on the adaptations of certain morphologies to different situations (Lighthill, 1975; Marshall, 1971). Tunas, for example, are highly specialized in many ways, many of which are probably adaptations to their active, pelagic lifestyle (Block and Stevens, 2001). However, eels, which have a different body shape and swimming mode from tunas, also migrate thousands of kilometers The Journal of Experimental Biology 211, 187-195 Published by The Company of Biologists 2008 doi:10.1242/jeb.008128


Canadian Journal of Zoology | 2018

Kinematic performance and muscle activation patterns during post-freeze locomotion in wood frogs ( Rana sylvatica )

Javier H. Santos-Santos; Brett Matthew Culbert; Emily M. Standen

Collaboration


Dive into the Emily M. Standen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Domenici

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert P. Levine

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge