Emily Nicholson
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emily Nicholson.
PLOS ONE | 2013
David A. Keith; Jon Paul Rodríguez; Kathryn M. Rodríguez-Clark; Emily Nicholson; Kaisu Aapala; Alfonso Alonso; Marianne Asmüssen; Steven P. Bachman; Alberto Basset; Edmund G. Barrow; John Benson; Melanie J. Bishop; Ronald Bonifacio; Thomas M. Brooks; Mark A. Burgman; Patrick J. Comer; Francisco A. Comín; Franz Essl; Don Faber-Langendoen; Peter G. Fairweather; Robert J. Holdaway; Michael Jennings; Richard T. Kingsford; Rebecca E. Lester; Ralph Mac Nally; Michael A. McCarthy; Justin Moat; María A. Oliveira-Miranda; Phil Pisanu; Brigitte Poulin
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity
Conservation Biology | 2011
Jon Paul Rodríguez; Kathryn M. Rodríguez-Clark; Jonathan E. M. Baillie; Neville Ash; John Benson; Timothy M. Boucher; Claire Brown; Neil D. Burgess; Ben Collen; Michael Jennings; David A. Keith; Emily Nicholson; Carmen Revenga; Belinda Reyers; Mathieu Rouget; Tammy Smith; Mark Spalding; Andrew Taber; Matt Walpole; Irene Zager; Tara Zamin
Abstract The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Natures (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystems extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012. Establecimiento de Criterios para la Lista Roja de UICN de Ecosistemas Amenazados Resumen El potencial para la conservación de muchas especies ha avanzado enormemente porque la Unión Internacional para la Conservación de la Naturaleza (UICN) ha desarrollado criterios objetivos, repetibles y transparentes para evaluar el riesgo de extinción que explícitamente separa la evaluación de riesgo de la definición de prioridades. En el IV Congreso Mundial de Conservación en 2008, el proceso comenzó a desarrollar e implementar estándares globales comparables para ecosistemas. Un grupo de trabajo establecido por la UICN ha formulado un sistema inicial de categorías y criterios cuantitativos, análogos a los utilizados para especies, para asignar niveles de amenaza a ecosistemas a niveles local, regional y global. Un sistema final requerirá de definiciones de ecosistemas; cuantificación del estatus de ecosistemas; identificación de las etapas de degradación y pérdida de los ecosistemas; medidas de riesgo (criterios) alternativas; umbrales de clasificación para esos criterios y métodos estandarizados para la realización de evaluaciones. El sistema deberá reflejar el nivel y tasa de cambio en la extensión, composición, estructura y funcionamiento de un ecosistema, y tener sus raíces conceptuales en la teoría ecológica y la investigación empírica. Sobre la base de esos requerimientos y la hipótesis de que el riesgo del ecosistema es una función del riesgo de las especies que lo componen, proponemos un conjunto de 4 criterios: declinaciones recientes en la distribución o funcionamiento ecológica, pérdida total histórica en la distribución o funcionamiento ecológico, distribución pequeña combinada con declinación, o distribución muy pequeña. La mayor parte del trabajo se ha concentrado en ecosistemas terrestres, pero también se requieren umbrales y criterios comparables para ecosistemas dulceacuícolas y marinos. Estos son los primeros pasos de un proceso de consulta internacional que llevará a una propuesta unificada que será presentada en el próximo Congreso Mundial de Conservación en 2012.
Ecological Applications | 2007
Emily Nicholson; Hugh P. Possingham
Population models for multiple species provide one of the few means of assessing the impact of alternative management options on the persistence of biodiversity, but they are inevitably uncertain. Is it possible to use population models in multiple-species conservation planning given the associated uncertainties? We use information-gap decision theory to explore the impact of parameter uncertainty on the conservation decision when planning for the persistence of multiple species. An information-gap approach seeks robust outcomes that are most immune from error. We assess the impact of uncertainty in key model parameters for three species, whose extinction risks under four alternative management scenarios are estimated using a metapopulation model. Three methods are described for making conservation decisions across the species, taking into account uncertainty. We find that decisions based on single species are relatively robust to uncertainty in parameters, although the estimates of extinction risk increase rapidly with uncertainty. When identifying the best conservation decision for the persistence of all species, the methods that rely on the rankings of the management options by each species result in decisions that are similarly robust to uncertainty. Methods that depend on absolute values of extinction risk are sensitive to uncertainty, as small changes in extinction risk can alter the ranking of the alternative scenarios. We discover that it is possible to make robust conservation decisions even when the uncertainties of the multiple-species problem appear overwhelming. However, the decision most robust to uncertainty is likely to differ from the best decision when uncertainty is ignored, illustrating the importance of incorporating uncertainty into the decision-making process.
PLOS ONE | 2012
Emily Nicholson; Ben Collen; Alberto Barausse; Julia L. Blanchard; Brendan T. Costelloe; Kathryn M. E. Sullivan; Fiona M. Underwood; Robert W. Burn; Steffen Fritz; Julia P. G. Jones; Louise McRae; Hugh P. Possingham; E. J. Milner-Gulland
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.
Conservation Biology | 2009
Emily Nicholson; David A. Keith; David S. Wilcove
Conservationists are increasingly interested in determining the threat status of ecological communities as a key part of their planning efforts. Such assessments are difficult because of conceptual challenges and a lack of generally accepted criteria. We reviewed 12 protocols for assessing the threat status of communities and identified conceptual and operational issues associated with developing a rigorous, transparent, and universal set of criteria for assessing communities, analogous to the International Union for Conservation of Nature (IUCN) Red List standards for species. We examined how each protocol defines a community and its extinction and how each applies 3 overarching criteria: decline in geographic distribution, restricted geographic distribution, and changes to ecological function. The protocols vary widely in threshold values used to assess declines and distribution size and the time frames used to assess declines, leading to inconsistent assessments of threat status. Few of the protocols specify a scale for measuring distribution size, although assessment outcomes are highly sensitive to scale. Protocols that apply different thresholds for species versus communities tend to require greater declines and more restricted distributions for communities than species to be listed in equivalent threat categories. Eleven of the protocols include a reduction in ecological function as a criterion, but almost all assess it qualitatively rather than quantitatively. We argue that criteria should be explicit and repeatable in their concepts, parameters, and scale, applicable to a broad range of communities, and address synergies between types of threats. Such criteria should focus on distribution size, declines in distribution, and changes to key ecological functions, with the latter based on workable proxies for assessing the severity, scope, and immediacy of degradation. Threat categories should be delimited by thresholds that are assessed at standard scales and are logically consistent with the viability of component species and important ecological functions.
Science | 2014
Ben Collen; Emily Nicholson
Predictive models of biodiversity change are required to inform conservation policy decisions Over the past decade, numerous metrics for biodiversity—including species abundance, extinction risk, distribution, genetic variability, species turnover, and trait diversity—have been used to create indicators to track how biodiversity has changed (1–3). These indicators have made it clear that biodiversity loss, however it is measured, is showing little sign of abatement (1, 4) and that humans must respond to safeguard the provision of natural services on which we all rely (5, 6). But which metrics provide the most informative indicators under which circumstances? And how can the growing list of indicators best serve conservation policy decisions?
Journal of Applied Ecology | 2015
Lucie M. Bland; C. David L. Orme; Jon Bielby; Ben Collen; Emily Nicholson; Michael A. McCarthy
1. Cost-effective reduction of uncertainty in global biodiversity indicators is a central goal of conservation. Comprising a sixth of the 74,000+ species currently on the IUCN Red List, Data Deficient species contribute to considerable uncertainty in estimates of extinction risk. Estimating levels of risk in Data Deficient species will require large resources given the costs of surveys and Red List assessments. Predicting extinction risk from species traits and geographical information could provide a cheaper approach for determining the proportion of Data Deficient species at risk of extinction. 2. We use double sampling theory to compare the cost-effectiveness of predictive models and IUCN Red List assessments for estimating risk levels in Data Deficient terrestrial mammals, amphibians, reptiles and crayfish. For each group, we calibrate Machine Learning models of extinction risk on species of known conservation status, and assess their cost and reliability relative to field surveys followed by Red List assessments. 3. We show that regardless of model type used or species group examined, it is always more cost-effective to determine the conservation status of all species with models and assess a small proportion of species with IUCN criteria (double sampling), rather than spend the same resources on field surveys and Red List assessments alone (single sampling). 4. We estimate that surveying and re-assessing all Data Deficient species currently listed on the IUCN Red List (12,206 species) with IUCN criteria would cost a minimum of US
Science of The Total Environment | 2018
Nicholas J. Murray; David A. Keith; Lucie M. Bland; Renata Ferrari; Mitchell Lyons; Richard Lucas; Nathalie Pettorelli; Emily Nicholson
323 million. Double sampling reduces the cost of determining the proportion of Data Deficient species at risk of extinction by up to 68%, because less than 6% of Data Deficient species would need to be surveyed and assessed with IUCN criteria. 5. Synthesis and applications. Double sampling with models cost-effectively estimates extinction risk levels in poorly-known species, and can be used to reduce the impact of uncertainty in the Red List and Red List Index. We provide recommendations for uptake by managers and a sampling planner spreadsheet. Double sampling could be applied more widely in ecology and conservation to formally compare the cost-effectiveness of sampling methods differing in cost and reliability.
PLOS ONE | 2015
Andrea P.C. Wallace; E. J. Milner-Gulland; Julia P. G. Jones; Nils Bunnefeld; Richard P. Young; Emily Nicholson
The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem.
Models for planning wildlife conservation in large landscapes | 2009
Steven R. Beissinger; Emily Nicholson; Hugh P. Possingham
Artisanal fisheries are a key source of food and income for millions of people, but if poorly managed, fishing can have declining returns as well as impacts on biodiversity. Management interventions such as spatial and temporal closures can improve fishery sustainability and reduce environmental degradation, but may carry substantial short-term costs for fishers. The Lake Alaotra wetland in Madagascar supports a commercially important artisanal fishery and provides habitat for a Critically Endangered primate and other endemic wildlife of conservation importance. Using detailed data from more than 1,600 fisher catches, we used linear mixed effects models to explore and quantify relationships between catch weight, effort, and spatial and temporal restrictions to identify drivers of fisher behaviour and quantify the potential effect of fishing restrictions on catch. We found that restricted area interventions and fishery closures would generate direct short-term costs through reduced catch and income, and these costs vary between groups of fishers using different gear. Our results show that conservation interventions can have uneven impacts on local people with different fishing strategies. This information can be used to formulate management strategies that minimise the adverse impacts of interventions, increase local support and compliance, and therefore maximise conservation effectiveness.