Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Keith is active.

Publication


Featured researches published by David A. Keith.


Biology Letters | 2008

Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models

David A. Keith; H. Resit Akçakaya; Wilfried Thuiller; Guy F. Midgley; Richard G. Pearson; Steven J. Phillips; Helen M. Regan; Miguel B. Araújo; Tony Rebelo

Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.


Ecology | 2004

Plant functional traits in relation to fire in crown-fire ecosystems

Juli G. Pausas; Ross A. Bradstock; David A. Keith; Jon E. Keeley

Disturbance is a dominant factor in many ecosystems, and the disturbance regime is likely to change over the next decades in response to land-use changes and global warming. We assume that predictions of vegetation dynamics can be made on the basis of a set of life-history traits that characterize the response of a species to disturbance. For crown-fire ecosystems, the main plant traits related to postfire persistence are the ability to resprout (persistence of individuals) and the ability to retain a persistent seed bank (persistence of populations). In this context, we asked (1) to what extent do different life- history traits co-occur with the ability to resprout and/or the ability to retain a persistent seed bank among differing ecosystems and (2) to what extent do combinations of fire- related traits (fire syndromes) change in a fire regime gradient? We explored these questions by reviewing the literature and analyzing databases compiled from different crown-fire ecosystems (mainly eastern Australia, California, and the Mediterranean basin). The review suggests that the pattern of correlation between the two basic postfire persistent traits and other plant traits varies between continents and ecosystems. From these results we predict, for instance, that not all resprouters respond in a similar way everywhere because the associated plant traits of resprouter species vary in different places. Thus, attempts to generalize predictions on the basis of the resprouting capacity may have limited power at a global scale. An example is presented for Australian heathlands. Considering the com- bination of persistence at individual (resprouting) and at population (seed bank) level, the predictive power at local scale was significantly increased.


Trends in Ecology and Evolution | 2002

Limits to the use of threatened species lists

Hugh P. Possingham; Sandy J. Andelman; Mark A. Burgman; Rodrigo A. Medellín; Larry L. Master; David A. Keith

Threatened species lists are designed primarily to provide an easily understood qualitative estimate of risk of extinction. Although these estimates of risk can be accurate, the lists have inevitably become linked to several decision-making processes. There are four ways in which such lists are commonly used: to set priorities for resource allocation for species recovery; to inform reserve system design; to constrain development and exploitation; and to report on the state of the environment. The lists were not designed for any one of these purposes, and consequently perform some of them poorly. We discuss why, if and how they should be used to achieve these purposes.


PLOS ONE | 2013

Scientific Foundations for an IUCN Red List of Ecosystems

David A. Keith; Jon Paul Rodríguez; Kathryn M. Rodríguez-Clark; Emily Nicholson; Kaisu Aapala; Alfonso Alonso; Marianne Asmüssen; Steven P. Bachman; Alberto Basset; Edmund G. Barrow; John Benson; Melanie J. Bishop; Ronald Bonifacio; Thomas M. Brooks; Mark A. Burgman; Patrick J. Comer; Francisco A. Comín; Franz Essl; Don Faber-Langendoen; Peter G. Fairweather; Robert J. Holdaway; Michael Jennings; Richard T. Kingsford; Rebecca E. Lester; Ralph Mac Nally; Michael A. McCarthy; Justin Moat; María A. Oliveira-Miranda; Phil Pisanu; Brigitte Poulin

An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity


Biological Conservation | 1992

A new approach for selecting fully representative reserve networks: addressing efficiency, reserve design and land suitability with an iterative analysis

M. Bedward; Robert L. Pressey; David A. Keith

Recent developments in procedures for selecting nature reserves have emphasized the goal of representing the full range of conservation features (e.g. species, communities, land systems) in a region. Iterative selection algorithms have proved to be very efficient at this task, but until now have not taken criteria for reserve design or land suitability into account. A new interactive computer program, CODA (Conservation Options and Decisions Analysis), overcomes these limitations. CODA is conceptually simple, yet powerful. A broad range of conservation objectives can be met and alternative reserve configurations can be displayed and compared. In this paper we outline the CODA procedure and apply it to a demonstration reserve planning exercise in southeastern New South Wales, Australia. The cost of reserve design criteria and of representing conservation features to different extents is assessed in terms of the total reserve area required. We discuss the implications of our results for formulating conservation proposals, especially with regard to competing land uses.


Biology Letters | 2009

Integrating bioclimate with population models to improve forecasts of species extinctions under climate change

Barry W. Brook; H. R. Akçakaya; David A. Keith; Georgina M. Mace; Richard G. Pearson; Miguel B. Araújo

Climate change is already affecting species worldwide, yet existing methods of risk assessment have not considered interactions between demography and climate and their simultaneous effect on habitat distribution and population viability. To address this issue, an international workshop was held at the University of Adelaide in Australia, 25–29 May 2009, bringing leading species distribution and population modellers together with plant ecologists. Building on two previous workshops in the UK and Spain, the participants aimed to develop methodological standards and case studies for integrating bioclimatic and metapopulation models, to provide more realistic forecasts of population change, habitat fragmentation and extinction risk under climate change. The discussions and case studies focused on several challenges, including spatial and temporal scale contingencies, choice of predictive climate, land use, soil type and topographic variables, procedures for ensemble forecasting of both global climate and bioclimate models and developing demographic structures that are realistic and species-specific and yet allow generalizations of traits that make species vulnerable to climate change. The goal is to provide general guidelines for assessing the Red-List status of large numbers of species potentially at risk, owing to the interactions of climate change with other threats such as habitat destruction, overexploitation and invasive species.


Conservation Biology | 2009

Major conservation policy issues for biodiversity in oceania

Richard T. Kingsford; Jem Watson; Carolyn J. Lundquist; Oscar Venter; Lesley Hughes; Emma L. Johnston; J Atherton; M Gawel; David A. Keith; Brendan Mackey; C.G. Morley; Hugh P. Possingham; B Raynor; Harry F. Recher; Kerrie A. Wilson

Oceania is a diverse region encompassing Australia, Melanesia, Micronesia, New Zealand, and Polynesia, and it contains six of the worlds 39 hotspots of diversity. It has a poor record for extinctions, particularly for birds on islands and mammals. Major causes include habitat loss and degradation, invasive species, and overexploitation. We identified six major threatening processes (habitat loss and degradation, invasive species, climate change, overexploitation, pollution, and disease) based on a comprehensive review of the literature and for each developed a set of conservation policies. Many policies reflect the urgent need to deal with the effects of burgeoning human populations (expected to increase significantly in the region) on biodiversity. There is considerable difference in resources for conservation, including people and available scientific information, which are heavily biased toward more developed countries in Oceania. Most scientific publications analyzed for four threats (habitat loss, invasive species, overexploitation, and pollution) are from developed countries: 88.6% of Web of Science publications were from Australia (53.7%), New Zealand (24.3%), and Hawaiian Islands (10.5%). Many island states have limited resources or expertise. Even countries that do (e.g., Australia, New Zealand) have ongoing and emerging significant challenges, particularly with the interactive effects of climate change. Oceania will require the implementation of effective policies for conservation if the regions poor record on extinctions is not to continue.


Conservation Biology | 2011

Establishing IUCN red list criteria for threatened ecosystems

Jon Paul Rodríguez; Kathryn M. Rodríguez-Clark; Jonathan E. M. Baillie; Neville Ash; John Benson; Timothy M. Boucher; Claire Brown; Neil D. Burgess; Ben Collen; Michael Jennings; David A. Keith; Emily Nicholson; Carmen Revenga; Belinda Reyers; Mathieu Rouget; Tammy Smith; Mark Spalding; Andrew Taber; Matt Walpole; Irene Zager; Tara Zamin

Abstract The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Natures (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystems extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012. Establecimiento de Criterios para la Lista Roja de UICN de Ecosistemas Amenazados Resumen El potencial para la conservación de muchas especies ha avanzado enormemente porque la Unión Internacional para la Conservación de la Naturaleza (UICN) ha desarrollado criterios objetivos, repetibles y transparentes para evaluar el riesgo de extinción que explícitamente separa la evaluación de riesgo de la definición de prioridades. En el IV Congreso Mundial de Conservación en 2008, el proceso comenzó a desarrollar e implementar estándares globales comparables para ecosistemas. Un grupo de trabajo establecido por la UICN ha formulado un sistema inicial de categorías y criterios cuantitativos, análogos a los utilizados para especies, para asignar niveles de amenaza a ecosistemas a niveles local, regional y global. Un sistema final requerirá de definiciones de ecosistemas; cuantificación del estatus de ecosistemas; identificación de las etapas de degradación y pérdida de los ecosistemas; medidas de riesgo (criterios) alternativas; umbrales de clasificación para esos criterios y métodos estandarizados para la realización de evaluaciones. El sistema deberá reflejar el nivel y tasa de cambio en la extensión, composición, estructura y funcionamiento de un ecosistema, y tener sus raíces conceptuales en la teoría ecológica y la investigación empírica. Sobre la base de esos requerimientos y la hipótesis de que el riesgo del ecosistema es una función del riesgo de las especies que lo componen, proponemos un conjunto de 4 criterios: declinaciones recientes en la distribución o funcionamiento ecológica, pérdida total histórica en la distribución o funcionamiento ecológico, distribución pequeña combinada con declinación, o distribución muy pequeña. La mayor parte del trabajo se ha concentrado en ecosistemas terrestres, pero también se requieren umbrales y criterios comparables para ecosistemas dulceacuícolas y marinos. Estos son los primeros pasos de un proceso de consulta internacional que llevará a una propuesta unificada que será presentada en el próximo Congreso Mundial de Conservación en 2012.


Australian Journal of Botany | 2000

Patterns in longevity of soil seedbanks in fire-prone communities of south-eastern Australia

Tony D. Auld; David A. Keith; Ross A. Bradstock

Seed burial in nylon mesh bags over a 2-year period was used to examine seed longevity patterns in 12 shrub and two graminoid species in fire-prone habitats around Sydney, south-eastern Australia. Most species released a large fraction of their annual seed-crop in a dormant state and all species showed evidence for some form of persistent seedbank. However, regressions of seed persistence over time were in most cases poor predictors of seed decay (9 of 14 study species). Considerable variation in the degree and pattern of seed longevity was apparent in the study species. Three functional groupings of species are suggested. (1) Seed half-lives in the soil predicted to be greater than 2 years and evidence of imposed secondary dormancy (continuous, Kunzea spp. or seasonal, Grevillea caleyi). Only Kunzea capitata and G. caleyi showed significant seed decay in this group. (2) Seed half-lives in the soil predicted to be greater than 2 years and no evidence of secondary dormancy (nine species). Six species had high seed dormancy at release (only two of which showed significant seed decay). Three species had initial seed dormancy of 40–57%—two (Asterolasia elegans and Zieria involucrata) with significant decay only for the non-dormant seed fraction, and one (Comesperma ericinum) with significant decay of both the dormant and non-dormant seed fractions. (3) Two species (Darwinia biflora and Persoonia pinifolia) showed evidence of very short mean half-lives of seeds in the soil (0.4–1.0 years). The threatened species, D. biflora, had a rapid initial seed decay over 6 months followed by little decay for 18 months, and the half-life of seeds is likely to be a poor predictor of seed longevity. For P. pinifolia, maintenance of a soil seedbank is predicted to be dependent on continual inputs of seeds locally or dispersal of seeds from other sites.


Journal of Vegetation Science | 1994

Fire and competition in Australian heath: a conceptual model and field investigations

David A. Keith; Ross A. Bradstock

. We describe a model of heath vegetation, in which species were classified into five functional groups based on characteristics of their propagule pools, post-fire growth, timing and mode of reproduction and competitive status. The model assumes no recruitment without fire and a simple competitive hierarchy based on vertical stature. A critical feature of the model is an initial post-fire window of 5–6 yr in which competition from overstorey species on understorey species is reduced. Understorey functional groups differ in their ability to exploit this window. In the field, we tested five predictions derived from the model: (a) overall species richness of understorey varies inversely with overstorey density as a result of a trend in richness of woody species, but not in herbaceous species; (b) where an overstorey was present in the previous fire interval, post-fire population density is reduced in a functional group of understorey serotinous resprouting shrubs, but not in a group of understorey obligate-seeding shrubs with soil seed banks; (c) in understorey serotinous resprouting shrubs, post-fire regrowth in resprouting individuals is adversely affected by the presence of an overstorey in the preceding fire interval; (d) in understorey serotinous resprouting shrubs, levels of pre-fire propagules are lower in the presence of an overstorey, reducing the density of post-fire recruits; and (e) in understorey serotinous resprouting shrubs, recruitment relative to the pre-fire population is unaffected by overstorey species within the window of reduced competition. Of these, three tests (a,b,d) supported the model, one (e) may support the model, but the results were inconclusive and one (c) did not support the model. Limitations and further applications of the model are discussed. Our results suggest that maintenance of high densities of overstorey populations is in conflict with conservation of some understorey species. Models of the type we propose will help identify and resolve such conflicts and promote the judicious use of fire to maintain full species diversity of plant communities.

Collaboration


Dive into the David A. Keith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J. Murray

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Lindenmayer

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark G. Tozer

Office of Environment and Heritage

View shared research outputs
Top Co-Authors

Avatar

Richard T. Kingsford

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge