Emina Sudar
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emina Sudar.
The Open Cardiovascular Medicine Journal | 2011
Sanja Soskic; Branislava Dobutovic; Emina Sudar; Milan Obradovic; Dragana Nikolic; Jelena Djordjevic; Djordje Radak; Dimitri P. Mikhailidis; Esma R. Isenovic
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
Biochemical Pharmacology | 2009
Ljubica Vucicevic; Maja Misirkic; Kristina Janjetovic; Ljubica Harhaji-Trajkovic; Marko Prica; Darko Stevanovic; Esma R. Isenovic; Emina Sudar; Mirjana Sumarac-Dumanovic; Dragan Micic; Vladimir Trajkovic
We investigated the effect of compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), on proliferation and viability of human U251 and rat C6 glioma cell lines. Compound C caused G(2)/M cell cycle block, accompanied by apoptotic glioma cell death characterized by caspase activation, phosphatidylserine exposure and DNA fragmentation. The mechanisms underlying the pro-apoptotic action of compound C involved induction of oxidative stress and downregulation of antiapoptotic molecule Bcl-2, while no alteration of pro-apoptotic Bax was observed. Compound C diminished AMPK phosphorylation and enzymatic activity, resulting in reduced phosphorylation of its target acetyl CoA carboxylase. AMPK activators metformin and AICAR partly prevented the cell cycle block, oxidative stress and apoptosis induced by compound C. The small interfering RNA (siRNA) targeting of human AMPK mimicked compound C-induced G(2)/M cell cycle arrest, but failed to induce oxidative stress and apoptosis in U251 glioma cells. In conclusion, our data indicate that AMPK inhibition is required, but not sufficient for compound C-mediated apoptotic death of glioma cells.
Brain Behavior and Immunity | 2012
Darko Stevanovic; Vesna Starcevic; Urosh Vilimanovich; Dejan Nesic; Ljubica Vucicevic; Maja Misirkic; Kristina Janjetovic; Emina Savic; Dusan Popadic; Emina Sudar; Dragan Micic; Mirjana Sumarac-Dumanovic; Vladimir Trajkovic
We investigated the effects of centrally administered orexigenic hormone ghrelin on energy imbalance-induced inflammation. Rats were subjected for four weeks to three different dietary regimes: normal (standard food), high-fat (standard food with 30% lard) or food-restricted (70%, 50%, 40% and 40% of the expected food intake in 1st, 2nd, 3rd and 4th week, respectively). Compared to normal-weight controls, starved, but not obese rats had significantly higher levels of proinflammatory cytokines (TNF, IL-1β, IFN-γ) in the blood. When compared to normally fed animals, the hearts of starved and obese animals expressed higher levels of mRNAs encoding proinflammatory mediators (TNF, IL-1β, IL-6, IFN-γ, IL-17, IL-12, iNOS), while mRNA levels of the anti-inflammatory TGF-β remained unchanged. Intracerebroventricular (ICV) injection of ghrelin (1 μg/day) for five consecutive days significantly reduced TNF, IL-1β and IFN-γ levels in the blood of starved rats, as well as TNF, IL-17 and IL-12p40 mRNA expression in the hearts of obese rats. Conversely, ICV ghrelin increased the levels of IFN-γ, IL-17, IL-12p35 and IL-12p40 mRNA in the heart tissue of food-restricted animals. This was associated with an increase of immunosuppressive ACTH/corticosterone production in starved animals and a decrease of the immunostimulatory adipokine leptin both in food-restricted and high-fat groups. Ghrelin activated the energy sensor AMP-activated protein kinase (AMPK) in the hypothalamus and inhibited extracellular signal-regulated kinase (ERK) in the hearts of obese, but not starved rats. Therefore, central ghrelin may play a complex role in energy imbalance-induced inflammation by modulating HPA axis, leptin and AMPK/ERK signaling pathways.
Angiology | 2011
Sanja Soskic; Branislava Dobutovic; Emina Sudar; Milan Obradovic; Dragana Nikolic; Božidarka L. Zarić; Srđjan Đ Stojanović; Edita Stokić; Dimitri P. Mikhailidis; Esma R. Isenovic
The peroxisome proliferator-activated receptors (PPARs) represent the family of 3 nuclear receptor isoforms-PPARα, -γ, and -δ/β, which are encoded by different genes. As lipid sensors, they are primarily involved in regulation of lipid metabolism and subsequently in inflammation and atherosclerosis. Atherosclerosis considers accumulation of the cells and extracellular matrix in the vessel wall leading to the formation of atherosclerotic plaque, atherothrombosis, and other vascular complications. Besides existence of natural ligands for PPARs, their more potent synthetic ligands are fibrates and thiazolidindiones. Future investigations should now focus on the mechanisms of PPARs activation, which might present new approaches involved in the antiatherosclerotic effects revealed in this review. In addition, in this review we are presenting latest data from recent performed clinical studies which have focus on novel approach to PPARs agonists as potential therapeutic agents in the treatment of complex disease such as atherosclerosis.
Journal of Theoretical Biology | 2008
Emina Sudar; Jelena Velebit; Zoran Gluvic; Zorica Zakula; Emilija Lazic; Ljiljana Vuksanovic-Topic; Biljana Putnikovic; Aleksandar Neskovic; Esma R. Isenovic
Causal relationship between sodium and hypertension has been proposed and various changes in Na+,K+-ATPase (sodium pump) activity have been described in established primary hypertension. A number of direct vascular effects of estradiol have been reported, including its impact on the regulation of sodium pump activity and vasomotor tone. The effects of estradiol involve the activation of multiple signaling cascades, including phosphatydil inositol-3 kinase (PI3K) and p42/44 mitogen-activated protein kinase (p42/44(MAPK)). In addition, some of the effects of estradiol have been linked to activity of cytosolic phospholipase A(2) (cPLA(2)). One possible cardioprotective mechanism of estradiol involves of the interaction between estradiol and the rennin-angiotensin system (RAS). Elevated circulating and tissue levels of angiotensin II (Ang II) have been implicated in the development of hypertension and heart failure. The aim of our investigation was to elucidate the signaling mechanisms employed by estradiol and Ang II in mediating sodium pump, in vascular smooth muscle cells (VSMC). The aim of our investigation was to elucidate the signaling mechanisms employed by estradiol and Ang II in mediating sodium pump activity/expression in VSMC, with particular emphasis on PI3K/cPLA(2)/p42/44(MAPK) signaling pathways. Our primary hypothesis is that estradiol stimulates sodium pump activity/expression in VSMC via PI3K/cPLA(2)/p42/44(MAPK) dependent mechanism and, that impaired estradiol-stimulated sodium pump activity/expression in hypertensive rodent models (i.e. SHR), Ang II-mediated vascular impairment of estradiol is related to a decrease ability of estradiol to stimulate the PI3K/cPLA(2)/p42/44(MAPK) signaling pathways. An important corollary to this hypothesis is that in hypertensive state (i.e. SHR rats) the decreasing in ACE enzyme activity and/or AT1 receptor expression caused by administration of estradiol is accompanying with abrogated ability of Ang II to decrease IRS-1/PI3K association, and consequent PI3K/cPLA(2)/p42/44(MAPK) activity and associated sodium pump activity/expression. A clear characterization of how Ang II attenuates estradiol signaling may lead to a better understanding of the molecular mechanism(s) underlying pathophysiological conditions such as hypertension and to understanding how certain pathophysiological situations affect sodium pump activity/expression in VSMC.
Molecular and Cellular Endocrinology | 2014
Milan Obradovic; Alan J. Stewart; Samantha J. Pitt; Milica Labudovic-Borovic; Emina Sudar; Voin Petrović; Sonja Zafirovic; Vera Maravic-Stojkovic; Vesna Vasić; Esma R. Isenovic
In this study the in vivo effects of estradiol in regulating Na(+)/K(+)-ATPase function in rat heart was studied. Adult male Wistar rats were treated with estradiol (40μg/kg, i.p.) and after 24h the animals were sacrificed and the heart excised. Following estradiol administration, cardiac Na(+)/K(+)-ATPase activity, expression of the α1 subunit, and phosphorylation of the α1 subunit were significantly increased. These animals also had significantly decreased levels of digoxin-like immunoreactive factor(s). Na(+) levels were also significantly reduced but to a level that was still within the normal physiological range, highlighting the ability of the Na(+)/K(+)-ATPase to balance the ionic composition following treatment with estradiol. Estradiol treated rats also showed increased phosphorylation of protein kinase B (Akt), and extracellular-signal-regulated kinase 1/2 (ERK1/2). We therefore suggest a role for Akt and/or ERK1/2 in estradiol-mediated regulation of cardiac Na(+)/K(+)-ATPase expression and activity in rat heart.
Angiology | 2015
Milan Obradovic; Emina Sudar; Sonja Zafirovic; Julijana Stanimirovic; Milica Labudovic-Borovic; Esma R. Isenovic
We studied the in vivo effects of estradiol on size and biochemical parameters of cardiomyocytes in pathophysiological conditions such as obesity and insulin resistance. Male Wistar rats were normally fed (controls, n = 7) or fed with high-fat diet (obese, n = 14). Half of the obese rats (obese + estradiol, n = 7) were treated with a single dose of estradiol (40 μg/kg, intraperitoneally) and 24 hours after treatment all the rats were killed. Estradiol in vivo in obese rats resulted in a significant increase in protein kinase B (Akt) activation (P < .05) and decrease in heart mass (P < .05), ratio of the heart mass/body mass (P < .05), transverse diameters of cardiomyocytes (P < .001), concentration of serum high-sensitivity C-reactive protein (P < .001), and total cholesterol (P < .01) compared with obese nontreated rats. Our results suggest that estradiol in obese/IR rats affects the size of cardiomyocytes and its actions lead in vivo to a reduction in obesity-induced cardiac hypertrophy, via Akt.
Current Pharmaceutical Design | 2013
Manfredi Rizzo; Ali A. Rizvi; Emina Sudar; Sanja Soskic; Milan Obradovic; Giuseppe Montalto; Mohamed Boutjdir; Dimitri P. Mikhailidis; Esma R. Isenovic
Ghrelin is a peptide hormone produced mainly in the stomach that has widespread tissue distribution and diverse hormonal, metabolic and cardiovascular activities. The circulating ghrelin concentration increases during fasting and decreases after food intake. Ghrelin secretion may thus be initiated by food intake and is possibly controlled by nutritional factors. Lean subjects have increased levels of circulating ghrelin compared with obese subjects. Recent reports show that low plasma ghrelin is associated with elevated fasting insulin levels, insulin resistance and type 2 diabetes mellitus. Factors involved in the regulation of ghrelin secretion have not yet been defined; however, it is assumed that blood glucose levels represent a significant regulator. Recent evidence indicates that ghrelin can increase myocardial contractility, enhance vasodilatation, and has protective effect from myocardial damage. It has been shown that ghrelin may improve cardiac function through growth hormone (GH)-dependent mechanisms but there is also evidence to suggest that ghrelins cardioprotective activity is independent of GH. Recent data demonstrate that ghrelin can influence key events in atherogenesis. Thus, ghrelin may be a new target for the treatment of some cardiovascular diseases. In this review, we consider the current literature focusing on ghrelin as a potential antiatherogenic agent in the treatment of various pathophysiological conditions.
Archives of Medical Science | 2014
Branislava Dobutovic; Emina Sudar; Snezana Tepavcevic; Jelena Djordjevic; Ana Djordjevic; Marija B. Radojcic; Esma R. Isenovic
Introduction We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. Material and methods Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor κB (NFκB) subunits 50 and 65. Results There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NFκB subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). Conclusions The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver.
Archives of Medical Science | 2012
Tijana Bojic; Emina Sudar; Dimitri P. Mikhailidis; Dragan Alavantić; Esma R. Isenovic
In coronary artery disease the G protein related kinases (GRKs) play a role in desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-ischemic heart failure (HF). Studies carried out in humans confirm the role of GRK-2 as a marker for the progression of HF after myocardial infarction (MI). The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous consequence of myocardial injury. In hypertension an increased level of GRK-2 was reported in both animal models and human studies. The role of GRKs in vagally mediated disorders such as vasovagal syncope and atrial fibrillation remains controversial. The role of GRKs in the pathogenesis of neurocardiological diseases provides an insight into the molecular pathogenesis process, opens potential therapeutic options and suggests new directins for scientific research.