Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristina Janjetovic is active.

Publication


Featured researches published by Kristina Janjetovic.


Bone | 2013

Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells

Aleksandar Pantovic; Aleksandra Krstić; Kristina Janjetovic; Jelena Kocic; Ljubica Harhaji-Trajkovic; Diana Bugarski; Vladimir Trajkovic

We investigated the role of AMP-activated protein kinase (AMPK), Akt, mammalian target of rapamycin (mTOR), autophagy and their interplay in osteogenic differentiation of human dental pulp mesenchymal stem cells. The activation of various members of AMPK, Akt and mTOR signaling pathways and autophagy was analyzed by immunoblotting, while osteogenic differentiation was assessed by alkaline phosphatase staining and real-time RT-PCR/immunoblot quantification of osteocalcin, Runt-related transcription factor 2 and bone morphogenetic protein 2 mRNA and/or protein levels. Osteogenic differentiation of mesenchymal stem cells was associated with early (day 1) activation of AMPK and its target Raptor, coinciding with the inhibition of mTOR and its substrate p70S6 kinase. The early induction of autophagy was demonstrated by accumulation of autophagosome-bound LC3-II, upregulation of proautophagic beclin-1 and a decrease in the selective autophagic target p62. This was followed by the late activation of Akt/mTOR at days 3-7 of differentiation. The RNA interference-mediated silencing of AMPK, mTOR or autophagy-essential LC3β, as well as the pharmacological inhibitors of AMPK (compound C), Akt (10-DEBC hydrochloride), mTOR (rapamycin) and autophagy (bafilomycin A1, chloroquine and ammonium chloride), each suppressed mesenchymal stem cell differentiation to osteoblasts. AMPK knockdown prevented early mTOR inhibition and autophagy induction, as well as late activation of Akt/mTOR signaling, while Akt inhibition suppressed mTOR activation without affecting AMPK phosphorylation. Our data indicate that AMPK controls osteogenic differentiation of human mesenchymal stem cells through both early mTOR inhibition-mediated autophagy and late activation of Akt/mTOR signaling axis.


European Journal of Pharmacology | 2011

Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt.

Kristina Janjetovic; Ljubica Vucicevic; Maja Misirkic; Urosh Vilimanovich; Gordana Tovilovic; Nevena Zogovic; Zoran Nikolić; Svetlana P. Jovanović; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

Metformin is an antidiabetic drug with anticancer properties, which mainly acts through induction of AMP-activated protein kinase (AMPK). In the present study we investigated the influence of metformin on the in vitro anticancer activity of the well-known chemotherapeutic agent cisplatin. Cell viability was determined by MTT and LDH release assay, oxidative stress and apoptosis (caspase activation, DNA fragmentation, and phosphatidylserine exposure) were assessed by flow cytometry, while activation of AMPK and Akt was analyzed by immunoblotting. Although metformin reduced the number of tumour cells when applied alone, it surprisingly antagonized the cytotoxicity of cisplatin towards U251 human glioma, C6 rat glioma, SHSY5Y human neuroblastoma, L929 mouse fibrosarcoma and HL-60 human leukemia cell lines. Only in B16 mouse melanoma cells metformin augmented the cytotoxicity of cisplatin. In U251 glioma cells metformin suppressed cisplatin-induced apoptotic cell death through inhibition of oxidative stress and caspase activation. The observed cytoprotection was apparently AMPK-independent, as metformin did not further increase cisplatin-induced AMPK activation in U251 cells and other pharmacological AMPK activators failed to block cisplatin-mediated apoptosis. On the other hand, metformin induced Akt activation in cisplatin-treated cells and Akt inhibitor 10-DEBC hydrochloride or phosphoinositide 3-kinase/Akt inhibitor LY294002 abolished metformin-mediated antioxidant and antiapoptotic effects. In conclusion, the antidiabetic drug metformin reduces cisplatin in vitro anticancer activity through AMPK-independent upregulation of Akt survival pathway. These data warrant caution when considering metformin for treatment of diabetic cancer patients receiving cisplatin or as a potential adjuvant in cisplatin-based chemotherapeutic regimens.


European Journal of Pharmacology | 2011

In vitro and in vivo anti-melanoma action of metformin

Kristina Janjetovic; Ljubica Harhaji-Trajkovic; Maja Misirkic-Marjanovic; Ljubica Vucicevic; Darko Stevanovic; Nevena Zogovic; Mirjana Sumarac-Dumanovic; Dragan Micic; Vladimir Trajkovic

The in vitro and in vivo anti-melanoma effect of antidiabetic drug metformin was investigated using B16 mouse melanoma cell line. Metformin caused a G(2)/M cell cycle arrest associated with apoptotic death of melanoma cells, as confirmed by the flow cytometric analysis of cell cycle/DNA fragmentation, phosphatidylserine exposure and caspase activation. Metformin-mediated apoptosis of melanoma cells was preceded by induction of oxidative stress and mitochondrial membrane depolarization, measured by flow cytometry in cells stained with appropriate fluorescent reporter dyes. The expression of tumor suppressor protein p53 was increased, while the mRNA levels of anti-apoptotic Bcl-2 were reduced by metformin, as revealed by cell-based ELISA and real-time RT-PCR, respectively. Treatment with metformin did not stimulate expression of the cycle blocker p21, indicating that p21 was dispensable for the observed cell cycle arrest. The activation of AMP-activated protein kinase (AMPK) was not required for the anti-melanoma action of metformin, as AMPK inhibitor compound C completely failed to restore viability of metformin-treated B16 cells. Metformin induced autophagy in B16 cells, as demonstrated by flow cytometry-detected increase in intracellular acidification and immunoblot-confirmed upregulation of autophagosome-associated LC3-II. Autophagy inhibitors ammonium chloride and wortmannin partly restored the viability of metformin-treated melanoma cells. Finally, oral administration of metformin led to a significant reduction in tumor size in a B16 mouse melanoma model. These data suggest that anti-melanoma effects of metformin are mediated through p21- and AMPK-independent cell cycle arrest, apoptosis and autophagy associated with p53/Bcl-2 modulation, mitochondrial damage and oxidative stress.


Biochemical Pharmacology | 2009

AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C.

Ljubica Vucicevic; Maja Misirkic; Kristina Janjetovic; Ljubica Harhaji-Trajkovic; Marko Prica; Darko Stevanovic; Esma R. Isenovic; Emina Sudar; Mirjana Sumarac-Dumanovic; Dragan Micic; Vladimir Trajkovic

We investigated the effect of compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), on proliferation and viability of human U251 and rat C6 glioma cell lines. Compound C caused G(2)/M cell cycle block, accompanied by apoptotic glioma cell death characterized by caspase activation, phosphatidylserine exposure and DNA fragmentation. The mechanisms underlying the pro-apoptotic action of compound C involved induction of oxidative stress and downregulation of antiapoptotic molecule Bcl-2, while no alteration of pro-apoptotic Bax was observed. Compound C diminished AMPK phosphorylation and enzymatic activity, resulting in reduced phosphorylation of its target acetyl CoA carboxylase. AMPK activators metformin and AICAR partly prevented the cell cycle block, oxidative stress and apoptosis induced by compound C. The small interfering RNA (siRNA) targeting of human AMPK mimicked compound C-induced G(2)/M cell cycle arrest, but failed to induce oxidative stress and apoptosis in U251 glioma cells. In conclusion, our data indicate that AMPK inhibition is required, but not sufficient for compound C-mediated apoptotic death of glioma cells.


ChemMedChem | 2010

Synthesis and in vitro Anticancer Activity of Octahedral Platinum(IV) Complexes with Cyclohexyl‐Functionalized Ethylenediamine‐N,N′‐Diacetate‐Type Ligands

Jelena Lazic; Ljubica Vucicevic; Sanja Grgurić-Šipka; Kristina Janjetovic; Goran N. Kaluđerović; Maja Misirkic; Maja Gruden-Pavlović; Dusan Popadic; Reinhard Paschke; Vladimir Trajkovic; Tibor J. Sabo

The present study describes the synthesis and anticancer activity of novel octahedral PtIV complexes with cyclohexyl functionalized ethylenediamine‐N,N′‐diacetate‐type ligands. Molecular mechanics calculations and density functional theory analysis revealed that s‐cis is the preferred geometry of these PtIV complexes with tetradentate‐coordinated (S,S)‐ethylenediamine‐N,N′‐di‐2‐(3‐cyclohexyl)propanoate. The viability of cancer cell lines (U251 human glioma, C6 rat glioma, L929 mouse fibrosarcoma, and B16 human melanoma) was assessed by measuring mitochondrial dehydrogenase activity and lactate dehydrogenase release. Cell‐cycle distribution, oxidative stress, caspase activation, and induction of autophagy were analyzed by flow cytometry using appropriate fluorescent reporter dyes. The cytotoxic activity of novel PtIV complexes against various cancer cell lines (IC50 range: 1.9–8.7 μM) was higher than that of cisplatin (IC50 range: 10.9–67.0 μM) and proceeded through completely different mechanisms. Cisplatin induced caspase‐dependent apoptosis associated with the cytoprotective autophagic response. In contrast, the new PtIV complexes caused rapid, caspase‐independent, oxidative stress‐mediated non‐apoptotic cell death characterized by massive cytoplasmic vacuolization, cell membrane damage, and the absence of protective autophagy.


Biomaterials | 2009

Opposite effects of nanocrystalline fullerene (C60) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C60

Nevena Zogovic; Nadezda Nikolic; Sanja Vranjes-Djuric; Ljubica Harhaji; Ljubica Vucicevic; Kristina Janjetovic; Maja Misirkic; Biljana Todorovic-Markovic; Zoran Marković; Slobodan K. Milonjic; Vladimir Trajkovic

In the present study, we compared the effects of nanocrystalline fullerene suspension (nanoC(60)) on tumour cell growth in vitro and in vivo. NanoC(60) suspension was prepared by solvent exchange using tetrahydrofuran to dissolve C(60). In vitro, nanoC(60) caused oxidative stress, mitochondrial depolarization and caspase activation, leading to apoptotic and necrotic death in mouse B16 melanoma cells. Biodistribution studies demonstrated that intraperitoneally injected radiolabeled (125I) nanoC(60) readily accumulated in the tumour tissue of mice subcutaneously inoculated with B16 cells. However, intraperitoneal administration of nanoC(60) over the course of two weeks starting from melanoma cell implantation not only failed to reduce, but significantly augmented tumour growth. The tumour-promoting effect of nanoC(60) was accompanied by a significant increase in splenocyte production of the immunoregulatory free radical nitric oxide (NO), as well as by a reduction in splenocyte proliferative responses to T- and B-cell mitogens ConcanavalinA and bacterial lipopolysaccharide, respectively. A negative correlation between NO production and splenocyte proliferation indicated a possible role of NO in reducing the proliferation of splenocytes from nanoC(60)-injected mice. These data demonstrate that nanoC(60), in contrast to its potent anticancer activity in vitro, can potentiate tumour growth in vivo, possibly by causing NO-dependent suppression of anticancer immune response.


Molecular and Cellular Endocrinology | 2013

Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling.

Darko Stevanovic; Vladimir Trajkovic; Sabrina Müller-Lühlhoff; Elisabeth Brandt; William Abplanalp; Christiane Bumke-Vogt; Beate Liehl; Petra Wiedmer; Kristina Janjetovic; Vesna Starcevic; Andreas F.H. Pfeiffer; Hadi Al-Hasani; Matthias H. Tschöp; Tamara R. Castañeda

Signaling through the mammalian target of rapamycin complex 1 (mTORC1) and its effectors the S6-kinases (S6K) in the hypothalamus is thought to be involved in nutrient sensing and control of food intake. Given the anatomical proximity of this pathway to circuits for the hormone ghrelin, we investigated the potential role of the mTORC1/S6K pathway in mediating the metabolic effects of ghrelin. We found that ghrelin promoted phosphorylation of S6K1 in the mouse hypothalamic cell line N-41 and in the rat hypothalamus after intracerebroventricular administration. Rapamycin, an inhibitor of mTORC1, suppressed ghrelin-induced phosphorylation of hypothalamic S6K1 and increased food intake and insulin in rats. Chronic peripheral administration of ghrelin induced a significant increase in body weight, fat mass and food efficiency in wild-type and S6K2-knockout but not in S6K1-knockout mice. We therefore propose that ghrelin-induced hyperphagia, adiposity and insulin secretion are controlled by a central nervous system involving the mTORC1/S6K1 pathway.


Pharmaceutical Research | 2012

Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation.

Ljubica Harhaji-Trajkovic; Katarina Arsikin; Tamara Kravic-Stevovic; Sasa Petricevic; Gordana Tovilovic; Aleksandar Pantovic; Nevena Zogovic; Biljana Ristic; Kristina Janjetovic; Vladimir Bumbasirevic; Vladimir Trajkovic

ABSTRACTPurposeTo investigate the ability of chloroquine, a lysosomotropic autophagy inhibitor, to enhance the anticancer effect of nutrient deprivation.MethodsSerum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro. Cell viability was measured by crystal violet and MTT assay. Oxidative stress, apoptosis/necrosis and intracellular acidification were analyzed by flow cytometry. Cell morphology was examined by light and electron microscopy. Activation of AMP-activated protein kinase (AMPK) and autophagy were monitored by immunoblotting. RNA interference was used for AMPK and LC3b knockdown. The anticancer efficiency of intraperitoneal chloroquine in calorie-restricted mice was assessed using a B16 mouse melanoma model.ResultsChloroquine rapidly killed serum-starved cancer cells in vitro. This effect was not mimicked by autophagy inhibitors or LC3b shRNA, indicating autophagy-independent mechanism. Chloroquine-induced lysosomal accumulation and oxidative stress, leading to mitochondrial depolarization, caspase activation and mixed apoptotic/necrotic cell death, were prevented by lysosomal acidification inhibitor bafilomycin. AMPK downregulation participated in chloroquine action, as AMPK activation reduced, and AMPK shRNA mimicked chloroquine toxicity. Chloroquine inhibited melanoma growth in calorie-restricted mice, causing lysosomal accumulation, mitochondrial disintegration and selective necrosis of tumor cells.ConclusionCombined treatment with chloroquine and calorie restriction might be useful in cancer therapy.


Biomaterials | 2009

The protection of cells from nitric oxide-mediated apoptotic death by mechanochemically synthesized fullerene (C60) nanoparticles

Maja Misirkic; Biljana Todorovic-Markovic; Ljubica Vucicevic; Kristina Janjetovic; Vukoman Jokanovic; Miroslav D. Dramićanin; Zoran Marković; Vladimir Trajkovic

The influence of fullerene (C(60)) nanoparticles on the cytotoxicity of a highly reactive free radical nitric oxide (NO) was investigated. Fullerene nanoparticles were prepared by mechanochemically assisted complexation with anionic surfactant sodium dodecyl sulfate, macrocyclic oligosaccharide gamma-cyclodextrin or the copolymer ethylene vinyl acetate-ethylene vinyl versatate. C(60) nanoparticles were characterized by UV-vis and atomic force microscopy. While readily internalized by mouse L929 fibroblasts, C(60) nanoparticles were not cytotoxic. Moreover, they partially protected L929 cells from the cytotoxic effect of NO-releasing compounds sodium nitroprusside (SNP), S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO) and 3-morpholino-sydnonimine (SIN-1). C(60) nanoparticles reduced SNP-induced apoptotic cell death by preventing mitochondrial depolarization, caspase activation, cell membrane phosphatidylserine exposure and DNA fragmentation. The protective action of C(60) nanoparticles was not exerted via direct interaction with NO, but through neutralization of mitochondria-produced superoxide radical in NO-treated cells, as demonstrated by using different redox-sensitive reporter fluorochromes. These data suggest that C(60) complexes with appropriate host molecules might be plausible candidates for preventing NO-mediated cell injury in inflammatory/autoimmune disorders.


Immunobiology | 2013

Therapeutic improvement of glucoregulation in newly diagnosed type 2 diabetes patients is associated with a reduction of IL-17 levels.

Mirjana Sumarac-Dumanovic; Danka Jeremic; Aleksandar Pantovic; Kristina Janjetovic; Danica Stamenkovic-Pejkovic; Goran Cvijovic; Darko Stevanovic; Dragan Micic; Vladimir Trajkovic

We explored the effect of therapeutic glucoregulation on the blood levels of proinflammatory T helper (Th)17 cytokines interleukin (IL)-17 and IL-23, and Th1 cytokines interferon (IFN)-γ and IL-12 in newly diagnosed type 2 diabetes patients. The investigated group consisted of 23 subjects (17 men and 6 women, age 26-64). The cytokine serum levels, glycated hemoglobin (HbA1c) as a marker of glucoregulation, homeostasis model assessment index as a measure of insulin resistance (HOMA-IR), and body mass index (BMI) were determined before and after 12 weeks of therapy consisting of standard lifestyle modification and metformin (1000 mg b.i.d.). The levels of Th17 and Th1 cytokines before treatment did not correlate with age, BMI or HOMA-IR. The patients with poor glucoregulation (HbA1c>7%, n=12), compared to those with good glucoregulation (HbA1c≤7%, n=11), had higher serum levels of Th17 and Th1 cytokines, but only the differences in IL-17 (median 21.2 pg/ml vs. 4.8 pg/ml) and IFN-γ 5 (0.6 pg/ml vs. 27.7 pg/ml) reached statistical significance (p=0.003 and p=0.012, respectively). The reduction of HbA1c values (from 8.6 to 5.9%, p=0.000) observed upon treatment in patients with poor glucoregulation was associated with a significant decrease in the concentration of IL-17 (from 21.2 to 12.9 pg/ml, p=0.020), but not IFN-γ (50.6 vs. 52.3, p=0.349). These data indicate that therapeutic improvement of glucoregulation might contribute to a reduction of IL-17 levels in newly diagnosed type 2 diabetes patients.

Collaboration


Dive into the Kristina Janjetovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darko Stevanovic

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge