Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emirhan Nemutlu is active.

Publication


Featured researches published by Emirhan Nemutlu.


PLOS ONE | 2012

Defects in Mitochondrial Dynamics and Metabolomic Signatures of Evolving Energetic Stress in Mouse Models of Familial Alzheimer's Disease

Eugenia Trushina; Emirhan Nemutlu; Song Zhang; Trace A. Christensen; Jon J. Camp; Janny Mesa; Ammar Siddiqui; Yasushi Tamura; Hiromi Sesaki; Thomas M. Wengenack; Petras P. Dzeja; Joseph F. Poduslo

Background The identification of early mechanisms underlying Alzheimers Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD.


The Journal of Physiology | 2011

Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency

Petras P. Dzeja; Kirsten Hoyer; Rong Tian; Song Zhang; Emirhan Nemutlu; Matthias Spindler; Joanne S. Ingwall

Non‐Technical Summary  Continuous and vigorous heart work is powered by the energetic grid consisting of mitochondria, miniature ATP‐generating fuel cells, and molecular connecting circuits transferring and distributing high‐energy phosphoryls. The creatine kinase (CK) phosphotransfer circuit is the major component of the energetic network, coupling mitochondria with ATP utilization sites, and CK deficiency is a hallmark of cardiovascular diseases. Identification of mechanisms that compensate for reduced CK function would foster approaches leading to recovery and repair of injured hearts. Here, using advanced stable isotope metabolic technologies, we demonstrate that genetic CK deficiency induces a shift in heart energy distribution and substrate utilization networks by redirecting phosphotransfer flux through alternative adenylate kinase, glycolytic and guanine nucleotide systems. Such energetic re‐wiring, together with increased mitochondrial and glycolytic capacities, defines an adaptive metabolomic phenotype of CK deficiency. These findings advance our understanding of cellular energetic infrastructure and provide new perspectives for regulation of energy distribution in disease states.


Journal of Cardiac Failure | 2015

Cardiac Resynchronization Therapy Induces Adaptive Metabolic Transitions in the Metabolomic Profile of Heart Failure

Emirhan Nemutlu; Song Zhang; Yi Zhou Xu; Andre Terzic; Li Zhong; Petras D. Dzeja; Yong Mei Cha

BACKGROUND Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. METHODS AND RESULTS This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P < .05). The glucose-palmitate ratio, an indicator of the balance between glycolytic and fatty acid metabolism, increased from 0.96 ± 0.05 to 1.54 ± 0.09 (P < .01). Compared with nonresponders to CRT, responders had a distinct baseline plasma metabolomic profile, including higher isoleucine, phenylalanine, leucine, glucose, and valine levels and lower glutamate levels at baseline (P < .05). CONCLUSIONS CRT improves the plasma metabolomic profile of HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome.


Physiological Genomics | 2012

Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted 31P NMR and mass spectrometry

Emirhan Nemutlu; Song Zhang; Anu Gupta; Nenad Juranić; Slobodan Macura; Andre Terzic; Arshad Jahangir; Petras P. Dzeja

Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope (18)O-assisted (31)P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The (18)O labeling procedure is based on the incorporation of one (18)O into P(i) from [(18)O]H(2)O with each act of ATP hydrolysis and the distribution of (18)O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded (18)O-labeling procedures has revealed significant differences in the dynamics of G-6-P[(18)O] (glycolysis), G-3-P[(18)O] (substrate shuttle), and G-1-P[(18)O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[(18)O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1-/-), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[(18)O] and decreased G-1-P[(18)O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit-/--deficient hearts is characterized by a higher G-6-[(18)O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[(18)O] turnover, as well as β-[(18)O]ATP and β-[(18)O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, (18)O-assisted gas chromatography-mass spectrometry and (31)P NMR provide a suitable platform for dynamic phosphometabolomic profiling of the cellular energetic system enabling prediction and diagnosis of metabolic diseases states.


Croatian Medical Journal | 2012

18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases.

Emirhan Nemutlu; Song Zhang; Nenad Juranić; Andre Terzic; Slobodan Macura; Petras P. Dzeja

Technological innovations and translation of basic discoveries to clinical practice drive advances in medicine. Todays innovative technologies enable comprehensive screening of the genome, transcriptome, proteome, and metabolome. The detailed knowledge, converged in the integrated “omics” (genomics, transcriptomics, proteomics, and metabolomics), holds an immense potential for understanding mechanism of diseases, facilitating their early diagnostics, selecting personalized therapeutic strategies, and assessing their effectiveness. Metabolomics is the newest “omics” approach aimed to analyze large metabolite pools. The next generation of metabolomic screening requires technologies for high throughput and robust monitoring of metabolite levels and their fluxes. In this regard, stable isotope 18O-based metabolite tagging technology expands quantitative measurements of metabolite levels and turnover rates to all metabolites that include water as a reactant, most notably phosphometabolites. The obtained profiles and turnover rates are sensitive indicators of energy and metabolic imbalances like the ones created by genetic deficiencies, myocardial ischemia, heart failure, neurodegenerative disorders, etc. Here we describe and discuss briefly the potential use of dynamic phosphometabolomic platform for disease diagnostics currently under development at Mayo Clinic.


Analytical and Bioanalytical Chemistry | 2012

Electron spray ionization mass spectrometry and 2D 31P NMR for monitoring 18O/16O isotope exchange and turnover rates of metabolic oligophosphates

Emirhan Nemutlu; Nenad Juranić; Song Zhang; Lawrence E. Ward; Tumpa Dutta; K. Sreekumaran Nair; Andre Terzic; Slobodan Macura; Petras P. Dzeja

AbstractA new method was here developed for the determination of 18O-labeling ratios in metabolic oligophosphates, such as ATP, at different phosphoryl moieties (α-, β-, and γ-ATP) using sensitive and rapid electrospray ionization mass spectrometry (ESI-MS). The ESI-MS-based method for monitoring of 18O/16O exchange was validated with gas chromatography–mass spectrometry and 2D 31P NMR correlation spectroscopy, the current standard methods in labeling studies. Significant correlation was found between isotopomer selective 2D 31P NMR spectroscopy and isotopomer less selective ESI-MS method. Results demonstrate that ESI-MS provides a robust analytical platform for simultaneous determination of levels, 18O-labeling kinetics and turnover rates of α-, β-, and γ-phosphoryls in ATP molecule. Such method is advantageous for large scale dynamic phosphometabolomic profiling of metabolic networks and acquiring information on the status of probed cellular energetic system. FigureMonitoring of 18O enrichment in ATP at α-, β- and γ-phosphoryl moieties using ESI-MS, GC-MS, 1D and 2D 31P NMR.


PLOS ONE | 2015

Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium.

Emirhan Nemutlu; Anu Gupta; Song Zhang; Maria Viqar; Ekhson Holmuhamedov; Andre Terzic; Arshad Jahangir; Petras P. Dzeja

Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.


Journal of Biomolecular NMR | 2011

31P NMR correlation maps of 18O/16O chemical shift isotopic effects for phosphometabolite labeling studies

Nenad Juranić; Emirhan Nemutlu; Song Zhang; Petras P. Dzeja; Andre Terzic; Slobodan Macura

Intramolecular correlations among the 18O-labels of metabolic oligophosphates, mapped by J-decoupled 31P NMR 2D chemical shift correlation spectroscopy, impart stringent constraints to the 18O-isotope distributions over the whole oligophosphate moiety. The multiple deduced correlations of isotopic labels enable determination of site-specific fractional isotope enrichments and unravel the isotopologue statistics. This approach ensures accurate determination of 18O-labeling rates of phosphometabolites, critical in biochemical energy conversion and metabolic flux transmission. The biological usefulness of the J-decoupled 31P NMR 2D chemical shift correlation maps was validated on adenosine tri-phosphate fractionally 18O labeled in perfused mammalian hearts.


Archive | 2014

CHAPTER 9:18O-assisted 31P NMR and Mass Spectrometry for Phosphometabolomic Fingerprinting and Metabolic Monitoring

Emirhan Nemutlu; Song Zhang; Andre Terzic; Petras P. Dzeja

Comprehensive characterisation of disease-related metabolomic phenotypes and drug effects requires monitoring metabolite levels and their turnover rates. Tandem application of stable isotope 18O-assisted 31P NMR and mass spectrometric techniques uniquely allow simultaneous measurements of phosphorus-containing metabolite levels and their dynamics in tissue and blood samples. The 18O labelling procedure is based on incorporation of the 18O atom, provided from H218O, into Pi with each act of ATP hydrolysis and the subsequent distribution of 18O-labelled phosphoryls amongst phosphate-carrying molecules. Essentially, all major phosphometabolites and their turnover rates can be quantified using 18O-assisted 31P NMR spectroscopy and mass spectrometry. This technology permits the simultaneous recording of ATP synthesis and utilisation, phosphotransfer fluxes through adenylate kinase, creatine kinase and glycolytic pathways, as well as mitochondrial nucleotide dynamics and glycogen turnover. Another advantage of 18O methodology is that it can measure almost every phosphotransfer and hydrolytic reaction taking place in the cell including the turnover of small pools of signalling molecules, and the dynamics of energetic signal communication. Our studies demonstrate that 18O-assisted 31P NMR/mass spectrometry is a valuable tool for phosphometabolomic and fluxomic profiling of transgenic models of human diseases, providing valuable data which reveals system-wide adaptations in metabolic networks.


Archive | 2015

NMR and mass spectrometry P 31 O-assisted 18 tissues and transgenic models by Dynamic phosphometabolomic profiling of human

Arshad Jahangir; Petras P. Dzeja; Emirhan Nemutlu; Song Zhang; Anu Gupta; Nenad Juranić

Collaboration


Dive into the Emirhan Nemutlu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge