Emma J. Gagen
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emma J. Gagen.
Applied and Environmental Microbiology | 2010
Emma J. Gagen; Stuart E. Denman; Jagadish Padmanabha; Someshwar Zadbuke; Rafat Al Jassim; Mark Morrison; Christopher S. McSweeney
ABSTRACT Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low “homoacetogen similarity” scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.
Frontiers in Microbiology | 2014
Travis B. Meador; Emma J. Gagen; Michael E Loscar; Tobias Goldhammer; Marcos Yukio Yoshinaga; Jenny Wendt; Michael Thomm; Kai-Uwe Hinrichs
We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2–8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria.
Applied and Environmental Microbiology | 2013
Emma J. Gagen; Harald Huber; Travis B. Meador; Kai-Uwe Hinrichs; Michael Thomm
ABSTRACT The uncultured miscellaneous crenarchaeotic group (MCG) archaea comprise one of the most abundant microbial groups in the Earths subsurface environment. However, very little information is available regarding the lifestyle, physiology, and factors controlling the distribution of members of this group. We established a novel method using both cultivation and molecular techniques, including a pre-PCR propidium monoazide treatment, to investigate viable members of the MCG in vitro. Enrichment cultures prepared from estuarine sediment were provided with one of a variety of carbon substrates or cultivation conditions and incubated for 3 weeks. Compared with the samples from time zero, there was an order-of-magnitude increase in the number of MCG 16S rRNA genes in almost all cultures, indicating that MCG archaea are amenable to in vitro cultivation. None of the tested substrates or conditions significantly stimulated growth of MCG archaea more than the basal medium alone; however, glycerol (0.02%) had a significantly inhibitory effect (P < 0.05). Diversity analysis of populations resulting from four culture treatments (basal medium, addition of amino acids, H2-CO2 as the gas phase, or initial aerobic conditions) revealed that the majority of viable MCG archaea were affiliated with the MCG-8 and MCG-4 clusters. There were no significant differences in MCG diversity between these treatments, also indicating that some members of MCG-4 and MCG-8 are tolerant of initially oxic conditions. The methods outlined here will be useful for further investigation of MCG archaea and comparison of substrates and cultivation conditions that influence their growth in vitro.
Frontiers in Microbiology | 2015
Marcos Yukio Yoshinaga; Emma J. Gagen; Lars Wörmer; Nadine K. Broda; Travis B. Meador; Jenny Wendt; Michael Thomm; Kai-Uwe Hinrichs
Methanothermobacter thermautotrophicus strain ΔH is a model hydrogenotrophic methanogen, for which extensive biochemical information, including the complete genome sequence, is available. Nevertheless, at the cell membrane lipid level, little is known about the responses of this archaeon to environmental stimuli. In this study, the lipid composition of M. thermautotrophicus was characterized to verify how this archaeon modulates its cell membrane components during growth phases and in response to hydrogen depletion and nutrient limitation (potassium and phosphate). As opposed to the higher abundance of phospholipids in the stationary phase of control experiments, cell membranes under nutrient, and energy stress were dominated by glycolipids that likely provided a more effective barrier against ion leakage. We also identified particular lipid regulatory mechanisms in M. thermautotrophicus, which included the accumulation of polyprenols under hydrogen-limited conditions and an increased content of sodiated adducts of lipids in nutrient-limited cells. These findings suggest that M. thermautotrophicus intensely modulates its cell membrane lipid composition to cope with energy and nutrient availability in dynamic environments.
Revista Brasileira De Zootecnia | 2009
Christopher S. McSweeney; Seungha Kang; Emma J. Gagen; Carl K. Davis; Mark Morrison; Stuart E. Denman
Nucleic acid-based techniques which can be used to characterise complex microbial communities without incubation are now being employed regularly in ruminant nutrition studies. Conventional culture-based methods for enumerating rumen microorganisms (bacteria, archaea, protozoa, and fungi) have been superseded and are now used mainly to obtain pure isolates of novel organisms and reference strains that are required for the development and validation of the nucleic acid approaches. These reference strains are also essential for physiological studies of the lifestyle of the organisms as well as sources of genomic DNA and RNA that can be analysed for functional gene activity. The foundation of the molecular ecology techniques is 16S/18S rDNA sequence analysis which has provided a phylogenetically based classification scheme for enumeration and identification of microbial community members. The use of this marker gene in assays involving the use of single nucleic acid probes or primer sets is rapidly evolving to high throughput approaches such as microarray analysis and new generation sequencing technologies. While these analyses are very informative for determining the composition of the microbial community and monitoring changes in population size, they can only infer function based on these observations. The focus of nucleic acid research is now shifting to the functional analysis of the ecosystem which involves the measurement of functional genes and their expression in the predominant or specific members of the rumen microbial community. Functional gene studies are less developed than 16S rDNA-based analysis of community structure. Also for gene expression studies there are inherent problems involved in extracting high quality RNA from digesta, and priming cDNA synthesis from bacterial mRNA. This paper reviews nucleic acid based molecular methods which have recently been developed for studying the structure and function of rumen microbial communities.
Archaea | 2016
Emma J. Gagen; Marcos Yukio Yoshinaga; Franka Garcia Prado; Kai-Uwe Hinrichs; Michael Thomm
The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.
Frontiers in Microbiology | 2017
Alastair W. Tait; Emma J. Gagen; Siobhan A. Wilson; Andrew George Tomkins; Gordon Southam
Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall.
Microbiology Australia | 2018
Talitha Santini; Emma J. Gagen
As the global population increases, so does the demand for minerals and energy resources. Demand for some of the major global commodities is currently growing at rates of: copper - 1.6% p.a.(1); iron ore: 1.4% p.a.(2); aluminium - 5% p.a.(3); rare earth elements - 7% p.a.(4), driven not only by population growth in China, India, and Africa, but also by increasing urbanisation and industrialisation globally. Technological advances in renewable energy production and storage, construction materials, transport, and computing could see demand for some of these resources spike by 2600% over the next 25 years under the most extreme demand scenarios(5). Coupled with declining ore grades, this demand means that the global extent of mining environments is set to increase dramatically. Land disturbance attributed to mining was estimated to be 400 000 km(2) in 2007(6), with projected rates of increase of 10 000 km(2) per year(7). This will increase the worldwide extent of mining environments from around 500 000 km(2) at present to 1 330 000 km(2) by 2100, larger than the combined land area of New South Wales and Victoria (1 050 000 km(2)), making them a globally important habitat for the hardiest of microbial life. The extreme geochemical and physical conditions prevalent in mining environments present great opportunities for discovery of novel microbial species and functions, as well as exciting challenges for microbiologists to apply their understanding to solve complex remediation problems.
Archive | 2015
Pradeep Kumar Malik; Raghavendra Bhatta; Emma J. Gagen; Veerasamy Sejian; N. M. Soren; Cadaba S. Prasad
Greenhouse gas (GHG) emissions from livestock is about 7,516 million metric tons CO2−eq. year−1 and has multiple components that include enteric methane emissions, methane and nitrous oxide emissions from manure and carbon dioxide emissions associated with feed production and grazing. An uninterruptedly increasing concentration (155 % more than preindustrial level), a comparatively high global warming potential and a short half-life of methane make it a bit more important than any other GHG in the control of global warming and climate change. Enteric methane mitigation is not only important from a global warming point but also for saving animal dietary energy which is otherwise lost in the form of methane. Due to the central regulatory role of H2, it is generally referred as the currency of fermentation and most of the mitigation strategies revolve around its production or disposal in such a way as to ensure the conservation of energy into desirable end products. In the chapter, an attempt is made to address the prospects of some emerging approaches to redirect metabolic H2 away from methanogenesis and serve as potential alternate sink for H2 in the rumen for conserving energy. The prospects of alternate sinks, for instance, sulphate and nitrate reduction and reductive acetogenesis and propionogenesis, are debated in the chapter along with the anticipated benefits that can be achieved from the practically feasible 20 % enteric methane reduction.
Geochimica et Cosmochimica Acta | 2014
Felix J Elling; Martin Könneke; Julius S. Lipp; Kevin W. Becker; Emma J. Gagen; Kai-Uwe Hinrichs
Collaboration
Dive into the Emma J. Gagen's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs