Stuart E. Denman
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart E. Denman.
Fems Microbiology Reviews | 2003
Denis O. Krause; Stuart E. Denman; Roderick I. Mackie; Mark Morrison; Ann L. Rae; Graeme T. Attwood; Christopher S. McSweeney
The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber. Increasing the efficiency with which the rumen microbiota degrades fiber has been the subject of extensive research for at least the last 100 years. Fiber digestion in the rumen is not optimal, as is supported by the fact that fiber recovered from feces is fermentable. This view is confirmed by the knowledge that mechanical and chemical pretreatments improve fiber degradation, as well as more recent research, which has demonstrated increased fiber digestion by rumen microorganisms when plant lignin composition is modified by genetic manipulation. Rumen microbiologists have sought to improve fiber digestion by genetic and ecological manipulation of rumen fermentation. This has been difficult and a number of constraints have limited progress, including: (a) a lack of reliable transformation systems for major fibrolytic rumen bacteria, (b) a poor understanding of ecological factors that govern persistence of fibrolytic bacteria and fungi in the rumen, (c) a poor understanding of which glycolyl hydrolases need to be manipulated, and (d) a lack of knowledge of the functional genomic framework within which fiber degradation operates. In this review the major fibrolytic organisms are briefly discussed. A more extensive discussion of the enzymes involved in fiber degradation is included. We also discuss the use of plant genetic manipulation, application of free-living lignolytic fungi and the use of exogenous enzymes. Lastly, we will discuss how newer technologies such as genomic and metagenomic approaches can be used to improve our knowledge of the functional genomic framework of plant cell wall degradation in the rumen.
Inflammatory Bowel Diseases | 2010
Seungha Kang; Stuart E. Denman; Mark Morrison; Zhongtang Yu; Joël Doré; Marion Leclerc; Chris McSweeney
Background: A custom phylogenetic microarray composed of small subunit ribosomal RNA probes, representing ≈500 bacterial species from the human and animal gut, was developed and evaluated for analysis of gut microbial diversity using fecal samples from healthy subjects and Crohns disease (CD) patients. Methods: Oligonucleotide probes (≈40 mer) used on the microarray were selected from published articles or designed with the “GoArray” microarray probe design program using selected bacterial 16S rRNA sequences. Fecal 16S rDNA from individual samples of six healthy subjects and six CD patients were used as template to generate fluorescently labeled cRNA that was hybridized to the microarray. Differences revealed by the microarray in relative abundance of microbial populations between healthy and diseased patients were verified using quantitative real‐time polymerase chain reaction (PCR) with species‐specific primer sets. Results: The microarray analyses showed that Eubacterium rectale, Bacteroides fragilis group, B. vulgatus, Ruminococcus albus, R. callidus, R. bromii, and Faecalibacterium prausnitzii were 5–10‐fold more abundant in the healthy subjects than in the CD patients, while Enterococcus sp., Clostridium difficile, Escherichia coli, Shigella flexneri, and Listeria sp. were more abundant in the CD group. Conclusions: The microarray detected differences in abundance of bacterial populations within the phylum Firmicutes that had been reported previously for the same samples based on phylogenetic analysis of metagenomic clone libraries. In addition, the microarray showed that Enterococcus sp. was in higher abundance in the CD patients. This microarray should be another useful tool to examine the diversity and abundance of human intestinal microbiota. (Inflamm Bowel Dis 2010)
Proceedings of the National Academy of Sciences of the United States of America | 2010
P. B. Pope; Stuart E. Denman; Michael P. Jones; Susannah G. Tringe; Kerrie Barry; Stephanie Malfatti; Alice C. McHardy; Jan-Fang Cheng; Philip Hugenholtz; Christopher S. McSweeney; Mark Morrison
Metagenomic and bioinformatic approaches were used to characterize plant biomass conversion within the foregut microbiome of Australias “model” marsupial, the Tammar wallaby (Macropus eugenii). Like the termite hindgut and bovine rumen, key enzymes and modular structures characteristic of the “free enzyme” and “cellulosome” paradigms of cellulose solubilization remain either poorly represented or elusive to capture by shotgun sequencing methods. Instead, multigene polysaccharide utilization loci-like systems coupled with genes encoding β-1,4-endoglucanases and β-1,4-endoxylanases—which have not been previously encountered in metagenomic datasets—were identified, as were a diverse set of glycoside hydrolases targeting noncellulosic polysaccharides. Furthermore, both rrs gene and other phylogenetic analyses confirmed that unique clades of the Lachnospiraceae, Bacteroidales, and Gammaproteobacteria are predominant in the Tammar foregut microbiome. Nucleotide composition-based sequence binning facilitated the assemblage of more than two megabase pairs of genomic sequence for one of the novel Lachnospiraceae clades (WG-2). These analyses show that WG-2 possesses numerous glycoside hydrolases targeting noncellulosic polysaccharides. These collective data demonstrate that Australian macropods not only harbor unique bacterial lineages underpinning plant biomass conversion, but their repertoire of glycoside hydrolases is distinct from those of the microbiomes of higher termites and the bovine rumen.
Letters in Applied Microbiology | 2008
Y.Q. Guo; Jing Liu; Y. Lu; W.Y. Zhu; Stuart E. Denman; Christopher S. McSweeney
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production.
Applied Microbiology and Biotechnology | 2012
Dragana Stanley; Stuart E. Denman; Robert J. Hughes; Mark S. Geier; Tamsyn M. Crowley; Honglei Chen; Volker Haring; Robert J. Moore
Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.
Science | 2011
P. B. Pope; Wendy J. Smith; Stuart E. Denman; Susannah G. Tringe; Kerrie Barry; Philip Hugenholtz; Christopher S. McSweeney; Alice C. McHardy; Mark Morrison
Metagenome sequence predicted the culture conditions required for successful isolation of a marsupial gut bacterium. The Tammar wallaby (Macropus eugenii) harbors unique gut bacteria and produces only one-fifth the amount of methane produced by ruminants per unit of digestible energy intake. We have isolated a dominant bacterial species (WG-1) from the wallaby microbiota affiliated with the family Succinivibrionaceae and implicated in lower methane emissions from starch-containing diets. This was achieved by using a partial reconstruction of the bacterium’s metabolism from binned metagenomic data (nitrogen and carbohydrate utilization pathways and antibiotic resistance) to devise cultivation-based strategies that produced axenic WG-1 cultures. Pure-culture studies confirm that the bacterium is capnophilic and produces succinate, further explaining a microbiological basis for lower methane emissions from macropodids. This knowledge also provides new strategic targets for redirecting fermentation and reducing methane production in livestock.
PLOS ONE | 2013
Dragana Stanley; Mark S. Geier; Robert J. Hughes; Stuart E. Denman; Robert J. Moore
Studies investigating the role that complex microbiotas associated with animals and humans play in health and wellbeing have been greatly facilitated by advances in DNA sequencing technology. Due to the still relatively high sequencing costs and the expense of establishing and running animal trials and collecting clinical samples, most of the studies reported in the literature are limited to a single trial and relatively small numbers of samples. Results from different laboratories, investigating similar trials and samples, have often produced quite different pictures of microbiota composition. This study investigated batch to batch variations in chicken cecal microbiota across three similar trials, represented by individually analysed samples from 207 birds. Very different microbiota profiles were found across the three flocks. The flocks also differed in the efficiency of nutrient use as indicated by feed conversion ratios. In addition, large variations in the microbiota of birds within a single trial were noted. It is postulated that the large variability in microbiota composition is due, at least in part, to the lack of colonisation of the chicks by maternally derived bacteria. The high hygiene levels maintained in modern commercial hatcheries, although effective in reducing the burden of specific diseases, may have the undesirable effect of causing highly variable bacterial colonization of the gut. Studies in humans and other animals have previously demonstrated large variations in microbiota composition when comparing individuals from different populations and from different environments but this study shows that even under carefully controlled conditions large variations in microbiota composition still occur.
Applied and Environmental Microbiology | 2010
Emma J. Gagen; Stuart E. Denman; Jagadish Padmanabha; Someshwar Zadbuke; Rafat Al Jassim; Mark Morrison; Christopher S. McSweeney
ABSTRACT Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low “homoacetogen similarity” scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.
Veterinary Microbiology | 2013
Dragana Stanley; Mark S. Geier; Stuart E. Denman; Volker Haring; Tamsyn M. Crowley; Robert J. Hughes; Robert J. Moore
The microbiota of the gastrointestinal tract is a complex community of many different species of microorganisms, dominated by bacteria. This diverse population provides the host with an extensive array of enzymes and substrates which, together with the hosts metabolic capabilities, provides an extensive metabolome available for nutrient and energy collection. We investigated broiler chickens to determine whether the abundance of certain members of the microbiota was correlated with the relative ability to extract energy from a typical wheat soybean diet. A number of mostly uncultured phylotypes were identified that significantly differed in abundance between birds with high apparent metabolizable energy (AME), measured as the difference between energy consumed and energy excreted, and those with low AME. Among the phylotypes that were more prevalent in birds with high energy efficiency, most were closely associated with isolates of bacterial groups that are commonly recognized as producing enzymes that degrade cellulose and/or resistant starch. Phylotypes that were negatively correlated with performance were all unknown and uncultured, a significant number belonging to an unknown class of Firmicutes. The identification of bacterial phylotypes correlated with the efficiency of energy use opens up the possibility of harnessing these bacteria for the manipulation of the hosts ability to utilize energy. Increasing the ability to convert food to body weight is of interest to the agricultural industries, while the opposite is applicable in weight management and obesity control in humans.
Veterinary Microbiology | 2012
Dragana Stanley; Anthony L. Keyburn; Stuart E. Denman; Robert J. Moore
Necrotic enteritis is a disease of considerable economic importance to the global poultry industry. Clostridium perfringens has long been recognised as the etiological agent of the disease. However, disease initiation and progression is complex and appears to be precipitated by a range of predisposing factors. The present study investigated microbial interactions in the caecum of birds challenged with C. perfringens that developed necrotic enteritis. Bacterial populations of healthy and diseased birds, across two independent animal trials, were characterised by pyrosequencing of the V1-V3 region of 16S rRNA genes. Significant changes in the microbiota of infected birds were detected. Most of the affected bacterial species, including a number of butyrate producers, were reduced in abundance in infected birds compared to uninfected controls and a number of phylotypes, classified as Weissella species, were also more abundant in healthy birds. Conversely, some bacterial groups were more abundant in the C. perfringens-infected birds, for example, members of an unclassified order of Mollicutes showed a 3.7-fold increase in abundance in infected birds. Representative sequences from this novel order shared 99% identity with sequences previously detected in intestinal microbiota of chickens and humans, and have previously been shown to be represented in a number of samples originating from irritable bowel syndrome disease patients. We speculate that these newly identified perturbations in the composition of caecal microflora may play a role in the development and manifestation of necrotic enteritis.
Collaboration
Dive into the Stuart E. Denman's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs