Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma L. Bailey is active.

Publication


Featured researches published by Emma L. Bailey.


Stroke | 2009

Potential Animal Models of Lacunar Stroke: A Systematic Review

Emma L. Bailey; James McCulloch; Cathie Sudlow; Joanna M. Wardlaw

Background and Purpose— Lacunar ischemic stroke accounts for 25% of all ischemic strokes, but the exact etiology is unknown. Numerous pathophysiologies have been proposed, including atheroma and endothelial dysfunction. Models of any of these pathological features would aid understanding of the etiology and help develop treatments for lacunar stroke. We therefore aimed to assess the relevance of all available potential animal models of lacunar stroke. Methods— We systematically reviewed the published literature for animal models that could represent lacunar stroke using validated search strategies. We included studies that could represent an aspect of lacunar stroke as well as those aiming to model conditions with potentially similar pathology and extracted data on species, induction method, and resulting brain and vessel lesions. Results— From 5670 papers, 41 studies (46 papers) met inclusion criteria representing over 10 different classes of stroke induction. Important data like infarct size and animal numbers were often missing. Many models’ infarcts were too large or affected the cortex. Emboli mostly caused cortical but not small subcortical lesions. Most models focused on creating ischemic lesions in brain tissue. Only one (spontaneous lesions in spontaneously hypertensive stroke-prone rats) also mimicked small vessel pathology. Here, the precursor to small vessel and brain damage was blood–brain barrier failure. Conclusion— Some animal models produce small subcortical infarcts, but few mimic the human small vessel pathology. Models of small vessel disease could help improve understanding of human lacunar disease, particularly to clarify factors associated with the small vessel morphological changes preceding brain damage. Much lacunar stroke may arise after blood–brain barrier disruption.


Brain Pathology | 2012

Pathology of lacunar ischemic stroke in humans--a systematic review.

Emma L. Bailey; Colin Smith; Cathie Sudlow; Joanna M. Wardlaw

Twenty‐five percent of ischemic strokes are lacunar in type, but the cause remains unclear. Pathological descriptions of lacunar lesions are available but have not been systematically assessed. We therefore systematically summarized studies describing lacunar lesions by extracting data on the number of patients and lesions, clinical details, pathological methods, brain regions and/or vessels examined, and both parenchymal and vascular findings.


International Journal of Stroke | 2011

Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review

Emma L. Bailey; Colin Smith; Cathie Sudlow; Joanna M. Wardlaw

The spontaneously hypertensive stroke prone rat is best known as an inducible model of large artery stroke. Spontaneous strokes and stroke propensity in the spontaneously hypertensive stroke prone rat are less well characterized; however, could be relevant to human lacunar stroke. We systematically reviewed the literature to assess the brain tissue and small vessel pathology underlying the spontaneous strokes of the spontaneously hypertensive stroke prone rat. We searched systematically three online databases from 1970 to May 2010; excluded duplicates, reviews, and articles describing the consequences of induced middle cerebral artery occlusion or noncerebral pathology; and recorded data describing brain region and the vessels examined, number of animals, age, dietary salt intake, vascular and tissue abnormalities. Among 102 relevant studies, animals sacrificed after developing stroke-like symptoms displayed arteriolar wall thickening, subcortical lesions, enlarged perivascular spaces and cortical infarcts and hemorrhages. Histopathology, proteomics and imaging studies suggested that the changes not due simply to hypertension. There may be susceptibility to endothelial permeability increase that precedes arteriolar wall thickening, degeneration and perivascular tissue changes; systemic inflammation may also precede cerebrovascular changes. There were very few data on venules or tissue changes before hypertension. The spontaneously hypertensive stroke prone rat shows similar features to human lacunar stroke and may be a good spontaneous model of this complex human disorder. Further studies should focus on structural changes at early ages and genetics to identify factors that predispose to vascular and brain damage.


International Journal of Stroke | 2012

Etiology of stroke and choice of models

Paul R. Krafft; Emma L. Bailey; Tim Lekic; William Rolland; Orhan Altay; Jiping Tang; Joanna M. Wardlaw; John H. Zhang; Cathie Sudlow

Animal models of stroke contribute to the development of better stroke prevention and treatment through studies investigating the pathophysiology of different stroke subtypes and by testing promising treatments before trials in humans. There are two broad types of animal models: those in which stroke is induced through artificial means, modeling the consequences of a vascular insult but not the vascular pathology itself; and those in which strokes occur spontaneously. Most animal models of stroke are in rodents due to cost, ethical considerations, availability of standardized neurobehavioral assessments, and ease of physiological monitoring. While there are similarities in cerebrovascular anatomy and pathophysiology between rodents and humans, there are also important differences, including brain size, length and structure of perforating arteries, and gray to white matter ratio, which is substantially lower in humans. The wide range of rodent models of stroke includes models of global and focal ischemia, and of intracerebral and sub-arachnoid hemorrhage. The most widely studied model of spontaneous stroke is the spontaneously hypertensive stroke-prone rat, in which the predominant lesions are small subcortical infarcts resulting from a vascular pathology similar to human cerebral small vessel disease. Important limitations of animal models of stroke – they generally model only certain aspects of the disease and do not reflect the heterogeneity in severity, pathology and comorbidities of human stroke – and key methodological issues (especially the need for adequate sample size, randomization, and blinding in treatment trials) must be carefully considered for the successful translation of pathophysiological concepts and therapeutics from bench to bedside.


Annals of Biomedical Engineering | 2015

Change of Direction in the Biomechanics of Atherosclerosis

Yumnah Mohamied; Ethan M. Rowland; Emma L. Bailey; Spencer J. Sherwin; Martin A. Schwartz; Peter D. Weinberg

The non-uniform distribution of atherosclerosis within the arterial system has been attributed to pro-atherogenic influences of low, oscillatory haemodynamic wall shear stress (WSS) on endothelial cells (EC). This theory is challenged by the changes in lesion location that occur with age in human and rabbit aortas. Furthermore, a number of point-wise comparisons of lesion prevalence and WSS have failed to support it. Here we investigate the hypothesis that multidirectional flow—characterized as the average magnitude of WSS components acting transversely to the mean vector (transWSS)—plays a key role. Maps of lesion prevalence around aortic branch ostia in immature and mature rabbits were compared with equivalent maps of time average WSS, the OSI (an index characterizing oscillatory flow) and transWSS, obtained from computational simulations; Spearman’s rank correlation coefficients were calculated for aggregated data and 95% confidence intervals were obtained by bootstrapping methods. Lesion prevalence correlated positively, strongly and significantly with transWSS at both ages. Correlations of lesion prevalence with the other shear metrics were not significant or were significantly lower than those obtained for transWSS. No correlation supported the low, oscillatory WSS theory. The data are consistent with the view that multidirectional near-wall flow is highly pro-atherogenic. Effects of multidirectional flow on EC, and methods for investigating them, are reviewed. The finding that oscillatory flow has pro-inflammatory effects when acting perpendicularly to the long axis of EC but anti-inflammatory effects when acting parallel to it may explain the stronger correlation of lesion prevalence with transWSS than with the OSI.


Neuropathology and Applied Neurobiology | 2011

Cerebral small vessel endothelial structural changes predate hypertension in stroke‐prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5‐ to 21‐week‐old rats

Emma L. Bailey; Joanna M. Wardlaw; Delyth Graham; Anna F. Dominiczak; Cathie Sudlow; Colin Smith

E. L. Bailey, J. M. Wardlaw, D. Graham, A. F. Dominiczak, C. L. M. Sudlow and C. Smith (2011) Neuropathology and Applied Neurobiology37, 711–726


Stroke | 2015

Genes from a translational analysis support a multifactorial nature of white matter hyperintensities.

Lorna M. Lopez; W. David Hill; Sarah E. Harris; Maria del C. Valdés Hernández; Susana Muñoz Maniega; Mark E. Bastin; Emma L. Bailey; Colin Smith; Martin W. McBride; John McClure; Delyth Graham; Anna F. Dominiczak; Qiong Yang; Myriam Fornage; M. Arfan Ikram; Stéphanie Debette; Lenore J. Launer; Joshua C. Bis; Reinhold Schmidt; Sudha Seshadri; David J. Porteous; Ian J. Deary; Joanna M. Wardlaw

Background and Purpose— White matter hyperintensities (WMH) of presumed vascular origin increase the risk of stroke and dementia. Despite strong WMH heritability, few gene associations have been identified. Relevant experimental models may be informative. Methods— We tested the associations between genes that were differentially expressed in brains of young spontaneously hypertensive stroke–prone rats and human WMH (using volume and visual score) in 621 subjects from the Lothian Birth Cohort 1936 (LBC1936). We then attempted replication in 9361 subjects from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE). We also tested the subjects from LBC1936 for previous genome-wide WMH associations found in subjects from CHARGE. Results— Of 126 spontaneously hypertensive stroke–prone rat genes, 10 were nominally associated with WMH volume or score in subjects from LBC1936, of which 5 (AFP, ALB, GNAI1, RBM8a, and MRPL18) were associated with both WMH volume and score (P<0.05); 2 of the 10 (XPNPEP1, P=6.7×10−5; FARP1, P=0.024) plus another spontaneously hypertensive stroke–prone rat gene (USMG5, P=0.00014), on chromosomes 10, 13, and 10 respectively, were associated with WMH in subjects from CHARGE. Gene set enrichment showed significant associations for downregulated spontaneously hypertensive stroke–prone rat genes with WMH in humans. In subjects from LBC1936, we replicated CHARGE’s genome-wide WMH associations on chromosomes 17 (TRIM65 and TRIM47) and, for the first time, 1 (PMF1). Conclusions— Despite not passing multiple testing thresholds individually, these genes collectively are relevant to known WMH associations, proposed WMH mechanisms, or dementia: associations with Alzheimers disease, late-life depression, ATP production, osmotic regulation, neurodevelopmental abnormalities, and cognitive impairment. If replicated further, they suggest a multifactorial nature for WMH and argue for more consideration of vascular contributions to dementia.


Neuropathology and Applied Neurobiology | 2014

Differential gene expression in multiple neurological, inflammatory and connective tissue pathways in a spontaneous model of human small vessel stroke.

Emma L. Bailey; Martin W. McBride; Wendy Beattie; John McClure; Delyth Graham; Anna F. Dominiczak; Cathie Sudlow; Colin Smith; Joanna M. Wardlaw

Cerebral small vessel disease (SVD) causes a fifth of all strokes plus diffuse brain damage leading to cognitive decline, physical disabilities and dementia. The aetiology and pathogenesis of SVD are unknown, but largely attributed to hypertension or microatheroma.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

Comparison of Statistical Methods for Assessing Spatial Correlations Between Maps of Different Arterial Properties

Ethan M. Rowland; Yumnah Mohamied; K. Yean Chooi; Emma L. Bailey; Peter D. Weinberg

Assessing the anatomical correlation of atherosclerosis with biomechanical localizing factors is hindered by spatial autocorrelation (SA), wherein neighboring arterial regions tend to have similar properties rather than being independent, and by the use of aggregated data, which artificially inflates correlation coefficients. Resampling data at lower resolution or reducing degrees-of-freedom in significance tests negated effects of SA but only in artificial situations where it occurred at a single length scale. Using Fourier or wavelet transforms to generate autocorrelation-preserving surrogate datasets, and thus to compute the null distribution, avoided this problem. Bootstrap methods additionally circumvented the errors caused by aggregating data. The bootstrap technique showed that wall shear stress (WSS) was significantly correlated with atherosclerotic lesion frequency and endothelial nuclear elongation, but not with the permeability of the arterial wall to albumin, in immature rabbits.


PLOS ONE | 2015

Mass transport properties of the rabbit aortic wall.

Emma L. Bailey; Eleni Bazigou; Piotr S. J. Sowinski; Peter D. Weinberg

Uptake of circulating macromolecules by the arterial wall may be a critical step in atherogenesis. Here we investigate the age-related changes in patterns of uptake that occur in the rabbit. In immature aortas, uptake was elevated in a triangle downstream of branch ostia, a region prone to disease in immature rabbits and children. By 16-22 months, uptake was high lateral to ostia, as is lesion prevalence in mature rabbits and young adults. In older rabbits there was a more upstream pattern, similar to the disease distribution in older people. These variations were predominantly caused by the branches themselves, rather than reflecting larger patterns within which the branches happened to be situated (as may occur with patterns of haemodynamic wall shear stress). The narrow streaks of high uptake reported in some previous studies were shown to be post mortem artefacts. Finally, heparin (which interferes with the NO pathway) had no effect on the difference in uptake between regions upstream and downstream of branches in immature rabbits but reversed the difference in older rabbits, as does inhibiting NO synthesis directly. Nevertheless, examination of uptake all around the branch showed that changes occurred at both ages and that they were quite subtle, potentially explaining why inhibiting NO has only minor effects on lesion patterns in mature rabbits and contradicting the earlier conclusion that mechanotransduction pathways change with age. We suggest that recently-established changes in the patterns of haemodynamic forces themselves are more likely to account for the age-dependence of uptake patterns.

Collaboration


Dive into the Emma L. Bailey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Smith

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge