Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma Lloyd Raven is active.

Publication


Featured researches published by Emma Lloyd Raven.


Nature Structural & Molecular Biology | 2003

Crystal Structure of the Ascorbate Peroxidase-Ascorbate Complex

Katherine H. Sharp; Martin Mewies; Peter C. E. Moody; Emma Lloyd Raven

Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse — most peroxidases oxidize small organic substrates, but there are prominent exceptions — and there is a notable absence of structural information for a representative peroxidase–substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase–ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.


Journal of Clinical Investigation | 2006

Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection

Alexey Popov; Zeinab Abdullah; Claudia Wickenhauser; Tomo Saric; Julia Driesen; Franz-Georg Hanisch; Eugen Domann; Emma Lloyd Raven; Oliver Dehus; Corinna Hermann; Daniela Eggle; Svenja Debey; Trinad Chakraborty; Martin Krönke; Olaf Utermöhlen; Joachim L. Schultze

Control of pathogens by formation of abscesses and granulomas is a major strategy of the innate immune system, especially when effector mechanisms of adaptive immunity are insufficient. We show in human listeriosis that DCs expressing indoleamine 2,3-dioxygenase (IDO), together with macrophages, are major cellular components of suppurative granulomas in vivo. Induction of IDO by DCs is a cell-autonomous response to Listeria monocytogenes infection and was also observed in other granulomatous infections with intracellular bacteria, such as Bartonella henselae. Reporting on our use of the clinically applied anti-TNF-alpha antibody infliximab, we further demonstrate in vitro that IDO induction is TNF-alpha dependent. Repression of IDO therefore might result in exacerbation of granulomatous diseases observed during anti-TNF-alpha therapy. These findings place IDO(+) DCs not only at the intersection of innate and adaptive immunity but also at the forefront of bacterial containment in granulomatous infections.


Journal of Inorganic Biochemistry | 2002

Mechanisms of compound I formation in heme peroxidases

Alexander N. P. Hiner; Emma Lloyd Raven; Roger N. F. Thorneley; Francisco García-Cánovas; José Neptuno Rodríguez-López

The formation of compound I is the first step in the reaction mechanism of plant heme peroxidases. This intermediate stores two oxidizing equivalents from hydrogen peroxide as an oxyferryl iron center and a radical, either on the porphyrin ring or on a tryptophan residue. Site-directed mutagenesis has proved to be a most useful tool for the identification of the intermediates involved and the resulting nature of the compound I formed. Although there is no doubt that an acid-base mechanism operates in heme peroxidase during the formation of compound I, the roles of several distal pocket residues are currently the subject of intensive research. It is now generally accepted that the conserved distal histidine in the active site of heme peroxidases is the acid-base catalyst that promotes the heterolytic cleavage of hydrogen peroxide. Other residues, such as the distal arginine and asparagine, participate in a range of roles assisting catalysis by the distal histidine. Recent advances in the elucidation of the mechanism at the molecular level are discussed. Another aspect related to the nature of compound I is the location of the radical center. Novel radical species have been detected in the reactions of ascorbate peroxidase, lignin peroxidase and several mutants of horseradish peroxidase. Detailed kinetic and spectroscopic studies of these radical species have provided important insights about the factors that control porphyrin-protein radical exchange. The wide range of data being obtained on compound I will lead to an understanding of its vital function in peroxidase catalysis and the physiological roles played by these enzymes.


Journal of the American Chemical Society | 2009

Reassessment of the Reaction Mechanism in the Heme Dioxygenases

Nishma Chauhan; Sarah J. Thackray; Sara A. Rafice; Graham Eaton; Michael Lee; Igor Efimov; Jaswir Basran; Paul R. Jenkins; Christopher G. Mowat; Stephen K. Chapman; Emma Lloyd Raven

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme enzymes that catalyze the O(2)-dependent oxidation of L-tryptophan to N-formyl-kynurenine. Previous proposals for the mechanism of this reaction have suggested that deprotonation of the indole NH group, either by an active-site base or by oxygen bound to the heme iron, as the initial step. In this work, we have examined the activity of 1-Me-L-Trp with three different heme dioxygenases and their site-directed variants. We find, in contrast to previous work, that 1-Me-L-Trp is a substrate for the heme dioxygenase enzymes. These observations suggest that deprotonation of the indole N(1) is not essential for catalysis, and an alternative reaction mechanism, based on the known chemistry of indoles, is presented.


Journal of Biological Chemistry | 2008

The Tuberculosis Prodrug Isoniazid Bound to Activating Peroxidases.

Clive L. Metcalfe; Isabel K. Macdonald; Emma J. Murphy; Katherine A. Brown; Emma Lloyd Raven; Peter C. E. Moody

Isoniazid (INH, isonicotinic acid hydrazine) is one of only two therapeutic agents effective in treating tuberculosis. This prodrug is activated by the heme enzyme catalase peroxidase (KatG) endogenous to Mycobacterium tuberculosis but the mechanism of activation is poorly understood, in part because the binding interaction has not been properly established. The class I peroxidases ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP) have active site structures very similar to KatG and are also capable of activating isoniazid. We report here the first crystal structures of complexes of isoniazid bound to APX and CcP. These are the first structures of isoniazid bound to any activating enzymes. The structures show that isoniazid binds close to the δ-heme edge in both APX and CcP, although the precise binding orientation varies slightly in the two cases. A second binding site for INH is found in APX at the γ-heme edge close to the established ascorbate binding site, indicating that the γ-heme edge can also support the binding of aromatic substrates. We also show that in an active site mutant of soybean APX (W41A) INH can bind directly to the heme iron to become an inhibitor and in a different mode when the distal histidine is replaced by alanine (H42A). These structures provide the first unambiguous evidence for the location of the isoniazid binding site in the class I peroxidases and provide rationalization of isoniazid resistance in naturally occurring KatG mutant strains of M. tuberculosis.


Biochemistry | 2011

Structure and Reaction Mechanism in the Heme Dioxygenases

Igor Efimov; Jaswir Basran; Sarah J. Thackray; Sandeep Handa; Christopher G. Mowat; Emma Lloyd Raven

As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.


Biochemical Society Transactions | 2009

Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase

Sara A. Rafice; Nishma Chauhan; Igor Efimov; Jaswir Basran; Emma Lloyd Raven

The family of haem dioxygenases catalyse the initial oxidative cleavage of L-tryptophan to N-formylkynurenine, which is the first, rate-limiting, step in the L-kynurenine pathway. In the present paper, we discuss and compare structure and function across the family of haem dioxygenases by focusing on TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase), including a review of recent structural information for both enzymes. The present paper describes how the recent development of recombinant expression systems has informed our more detailed understanding of the substrate binding, catalytic activity and mechanistic properties of these haem dioxygenases.


Biochemistry | 2008

A kinetic, spectroscopic, and redox study of human tryptophan 2,3-dioxygenase.

Jaswir Basran; Sara A. Rafice; Nishma Chauhan; Igor Efimov; Myles R. Cheesman; Lila Ghamsari; Emma Lloyd Raven

The family of heme dioxygenases, as exemplified by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase, catalyzes the oxidative cleavage of L-tryptophan to N-formylkynurenine. Here, we describe a bacterial expression system for human tryptophan 2,3-dioxygenase (rhTDO) together with spectroscopic, kinetic, and redox analyses. We find unexpected differences between human tryptophan 2,3-dioxygenase and human indoleamine 2,3-dioxygenase [Chauhan et al. (2008) Biochemistry 47, 4761-4769 ]. Thus, in contrast to indoleamine 2,3-dioxygenase, the catalytic ferrous-oxy complex of rhTDO is not observed, nor does the enzyme discriminate against substrate binding to the ferric derivative. In addition, we show that the rhTDO is also catalytically active in the ferric form. These new findings illustrate that significant mechanistic differences exist across the heme dioxygenase family, and the data are discussed within this broader framework.


Science | 2014

Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase

Cecilia M. Casadei; Andrea Gumiero; Clive L. Metcalfe; Emma J. Murphy; Jaswir Basran; Maria Grazia Concilio; Susana C. M. Teixeira; Tobias E. Schrader; Alistair J. Fielding; Andreas Ostermann; Matthew P. Blakeley; Emma Lloyd Raven; Peter C. E. Moody

Peroxidase proton placement Heme enzymes catalyze a variety of biochemical oxidations through the activation of oxygen by iron. Casadei et al. used neutron crystallography to elucidate the mechanism of cytochrome c peroxidase (see the perspective by Groves and Boaz). In the highly reactive intermediate state termed compound I, the iron(IV) oxo, or ferryl, fragment was not protonated, whereas a nearby histidine residue was protonated. The sensitivity of neutron scattering to proton locations revealed these protonation states, where more common techniques, such as x-ray diffraction, have yielded more ambiguous results. Science, this issue p. 193; see also p. 142 The sensitivity of neutron scattering to proton locations clarifies the acid/base chemistry of a biochemical oxidation. [Also see Perspective by Groves and Boaz] Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct visualization of protonation states. We demonstrate that the ferryl heme is an Fe(IV)=O species and is not protonated. Comparison of the structures shows that the distal histidine becomes protonated on formation of the ferryl intermediate, which has implications for the understanding of O–O bond cleavage in heme enzymes. The structures highlight the advantages of neutron cryo-crystallography in probing reaction mechanisms and visualizing protonation states in enzyme intermediates.


Journal of Biological Chemistry | 2011

Nature of the ferryl heme in Compounds I and II.

Andrea Gumiero; Clive L. Metcalfe; Arwen R. Pearson; Emma Lloyd Raven; Peter C. E. Moody

Heme enzymes are ubiquitous in biology and catalyze a vast array of biological redox processes. The formation of high valent ferryl intermediates of the heme iron (known as Compounds I and Compound II) is implicated for a number of catalytic heme enzymes, but these species are formed only transiently and thus have proved somewhat elusive. In consequence, there has been conflicting evidence as to the nature of these ferryl intermediates in a number of different heme enzymes, in particular the precise nature of the bond between the heme iron and the bound oxygen atom. In this work, we present high resolution crystal structures of both Compound I and Compound II intermediates in two different heme peroxidase enzymes, cytochrome c peroxidase and ascorbate peroxidase, allowing direct and accurate comparison of the bonding interactions in the different intermediates. A consistent picture emerges across all structures, showing lengthening of the ferryl oxygen bond (and presumed protonation) on reduction of Compound I to Compound II. These data clarify long standing inconsistencies on the nature of the ferryl heme species in these intermediates.

Collaboration


Dive into the Emma Lloyd Raven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Efimov

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge