Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. E. Moody is active.

Publication


Featured researches published by Peter C. E. Moody.


web science | 1987

Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution.

Tadeusz Skarżyński; Peter C. E. Moody; A.J. Wonacott

The structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus has been crystallographically refined at 1.8 A resolution using restrained least-squares refinement methods. The final crystallographic R-factor for 93,120 reflexions with F greater than 3 sigma (F) is 0.177. The asymmetric unit of the crystal contains a complete tetramer, the final model of which incorporates a total of 10,272 unique protein and coenzyme atoms together with 677 bound solvent molecules. The structure has been analysed with respect to molecular symmetry, intersubunit contacts, coenzyme binding and active site geometry. The refined model shows the four independent subunits to be remarkable similar apart from local deviations due to intermolecular contacts within the crystal lattice. A number of features are revealed that had previously been misinterpreted from an earlier 2.7 A electron density map. Arginine at position 195 (previously thought to be a glycine) contributes to the formation of the anion binding sites in the active site pocket, which are involved in binding of the substrate and inorganic phosphates during catalysis. This residue seems to be structurally equivalent to the conserved Arg194 in the enzyme from other sources. In the crystal both of the anion binding sites are occupied by sulphate ions. The ND atom of the catalytically important His176 is hydrogen-bonded to the main-chain carbonyl oxygen of Ser177, thus fixing the plane of the histidine imidazole ring and preventing rotation. The analysis has revealed the presence of several internal salt-bridges stabilizing the tertiary and quaternary structure. A significant number of buried water molecules have been found that play an important role in the structural integrity of the molecule.


Nature Structural & Molecular Biology | 2003

Crystal Structure of the Ascorbate Peroxidase-Ascorbate Complex

Katherine H. Sharp; Martin Mewies; Peter C. E. Moody; Emma Lloyd Raven

Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse — most peroxidases oxidize small organic substrates, but there are prominent exceptions — and there is a notable absence of structural information for a representative peroxidase–substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase–ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.


web science | 1997

A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm

N.H. Keep; Maria Barnes; Igor L. Barsukov; Ramin Badii; Lu-Yun Lian; Anthony W. Segal; Peter C. E. Moody; Gordon C. K. Roberts

BACKGROUND The rho family of small G proteins, including rho, rac and cdc42, are involved in many cellular processes, including cell transformation by ras and the organization of the actin cytoskeleton. Additionally, rac has a role in the regulation of phagocyte NADPH oxidase. Guanine nucleotide dissociation inhibitors (GDIs) of the rhoGDI family bind to these G proteins and regulate their activity by preventing nucleotide dissociation and by controlling their interaction with membranes. RESULTS We report the structure of rhoGDI, determined by a combination of X-ray crystallography and NMR spectroscopy. NMR spectroscopy and selective proteolysis show that the N-terminal 50-60 residues of rhoGDI are flexible and unstructured in solution. The 2.5 A crystal structure of the folded core of rhoGDI, comprising residues 59-204, shows it to have an immunoglobulin-like fold, with an unprecedented insertion of two short beta strands and a 310 helix. There is an unusual pocket between the beta sheets of the immunoglobulin fold which may bind the C-terminal isoprenyl group of rac. NMR spectroscopy shows that the N-terminal arm is necessary for binding rac, although it remains largely flexible even in the complex. CONCLUSIONS The rhoGDI structure is notable for the existence of both a structured and a highly flexible domain, both of which appear to be required for the interaction with rac. The immunoglobulin-like fold of the structured domain is unusual for a cytoplasmic protein. The presence of equivalent cleavage sites in rhoGDI and the closely related D4/Ly-GDI (rhoGDI-2) suggest that proteolytic cleavage between the flexible and structured regions of rhoGDI may have a role in the regulation of the activity of members of this family. There is no detectable similarity between the structure of rhoGDI and the recently reported structure of rabGDI, which performs the same function as rhoGDI for the rab family of small G proteins.


Journal of Biological Chemistry | 2008

The Tuberculosis Prodrug Isoniazid Bound to Activating Peroxidases.

Clive L. Metcalfe; Isabel K. Macdonald; Emma J. Murphy; Katherine A. Brown; Emma Lloyd Raven; Peter C. E. Moody

Isoniazid (INH, isonicotinic acid hydrazine) is one of only two therapeutic agents effective in treating tuberculosis. This prodrug is activated by the heme enzyme catalase peroxidase (KatG) endogenous to Mycobacterium tuberculosis but the mechanism of activation is poorly understood, in part because the binding interaction has not been properly established. The class I peroxidases ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP) have active site structures very similar to KatG and are also capable of activating isoniazid. We report here the first crystal structures of complexes of isoniazid bound to APX and CcP. These are the first structures of isoniazid bound to any activating enzymes. The structures show that isoniazid binds close to the δ-heme edge in both APX and CcP, although the precise binding orientation varies slightly in the two cases. A second binding site for INH is found in APX at the γ-heme edge close to the established ascorbate binding site, indicating that the γ-heme edge can also support the binding of aromatic substrates. We also show that in an active site mutant of soybean APX (W41A) INH can bind directly to the heme iron to become an inhibitor and in a different mode when the distal histidine is replaced by alanine (H42A). These structures provide the first unambiguous evidence for the location of the isoniazid binding site in the class I peroxidases and provide rationalization of isoniazid resistance in naturally occurring KatG mutant strains of M. tuberculosis.


Science | 2014

Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase

Cecilia M. Casadei; Andrea Gumiero; Clive L. Metcalfe; Emma J. Murphy; Jaswir Basran; Maria Grazia Concilio; Susana C. M. Teixeira; Tobias E. Schrader; Alistair J. Fielding; Andreas Ostermann; Matthew P. Blakeley; Emma Lloyd Raven; Peter C. E. Moody

Peroxidase proton placement Heme enzymes catalyze a variety of biochemical oxidations through the activation of oxygen by iron. Casadei et al. used neutron crystallography to elucidate the mechanism of cytochrome c peroxidase (see the perspective by Groves and Boaz). In the highly reactive intermediate state termed compound I, the iron(IV) oxo, or ferryl, fragment was not protonated, whereas a nearby histidine residue was protonated. The sensitivity of neutron scattering to proton locations revealed these protonation states, where more common techniques, such as x-ray diffraction, have yielded more ambiguous results. Science, this issue p. 193; see also p. 142 The sensitivity of neutron scattering to proton locations clarifies the acid/base chemistry of a biochemical oxidation. [Also see Perspective by Groves and Boaz] Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct visualization of protonation states. We demonstrate that the ferryl heme is an Fe(IV)=O species and is not protonated. Comparison of the structures shows that the distal histidine becomes protonated on formation of the ferryl intermediate, which has implications for the understanding of O–O bond cleavage in heme enzymes. The structures highlight the advantages of neutron cryo-crystallography in probing reaction mechanisms and visualizing protonation states in enzyme intermediates.


Journal of Biological Chemistry | 2011

Nature of the ferryl heme in Compounds I and II.

Andrea Gumiero; Clive L. Metcalfe; Arwen R. Pearson; Emma Lloyd Raven; Peter C. E. Moody

Heme enzymes are ubiquitous in biology and catalyze a vast array of biological redox processes. The formation of high valent ferryl intermediates of the heme iron (known as Compounds I and Compound II) is implicated for a number of catalytic heme enzymes, but these species are formed only transiently and thus have proved somewhat elusive. In consequence, there has been conflicting evidence as to the nature of these ferryl intermediates in a number of different heme enzymes, in particular the precise nature of the bond between the heme iron and the bound oxygen atom. In this work, we present high resolution crystal structures of both Compound I and Compound II intermediates in two different heme peroxidase enzymes, cytochrome c peroxidase and ascorbate peroxidase, allowing direct and accurate comparison of the bonding interactions in the different intermediates. A consistent picture emerges across all structures, showing lengthening of the ferryl oxygen bond (and presumed protonation) on reduction of Compound I to Compound II. These data clarify long standing inconsistencies on the nature of the ferryl heme species in these intermediates.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation.

Umakhanth Venkatraman Girija; Alexandre R. Gingras; Jamie E. Marshall; Roshni Panchal; Md. Arif Sheikh; Péter Gál; Wilhelm J. Schwaeble; Daniel Anthony Mitchell; Peter C. E. Moody; Russell Wallis

Complement component C1, the complex that initiates the classical pathway of complement activation, is a 790-kDa assembly formed from the target-recognition subcomponent C1q and the modular proteases C1r and C1s. The proteases are elongated tetramers that become more compact when they bind to the collagen-like domains of C1q. Here, we describe a series of structures that reveal how the subcomponents associate to form C1. A complex between C1s and a collagen-like peptide containing the C1r/C1s-binding motif of C1q shows that the collagen binds to a shallow groove via a critical lysine side chain that contacts Ca2+-coordinating residues. The data explain the Ca2+-dependent binding mechanism, which is conserved in C1r and also in mannan-binding lectin-associated serine proteases, the serine proteases of the lectin pathway activation complexes. In an accompanying structure, C1s forms a compact ring-shaped tetramer featuring a unique head-to-tail interaction at its center that replicates the likely arrangement of C1r/C1s polypeptides in the C1 complex. Additional structures reveal how C1s polypeptides are positioned to enable activation by C1r and interaction with the substrate C4 inside the cage-like assembly formed by the collagenous stems of C1q. Together with previously determined structures of C1r fragments, the results reported here provide a structural basis for understanding the early steps of complement activation via the classical pathway.


Biochemistry | 2008

The role of serine 167 in human indoleamine 2,3-dioxygenase: a comparison with tryptophan 2,3-dioxygenase.

Nishma Chauhan; Jaswir Basran; Igor Efimov; Dimitri A. Svistunenko; Harriet E. Seward; Peter C. E. Moody; Emma Lloyd Raven

The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.


Archives of Biochemistry and Biophysics | 2010

An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective

Andrea Gumiero; Emma J. Murphy; Clive L. Metcalfe; Peter C. E. Moody; Emma Lloyd Raven

The interactions of heme peroxidase enzymes with their substrates have been studied for many years, but only in the last decade or so has structural information begun to appear. This review looks at crystal structures for a number of heme peroxidases in complex with a number of (mainly organic) substrates. It examines the nature and location of the binding interaction, and explores functional similarities and differences across the family.


Structure | 2011

Structural Basis of Mannan-Binding Lectin Recognition by Its Associated Serine Protease MASP-1: Implications for Complement Activation.

Alexandre R. Gingras; Umakhanth Venkatraman Girija; Anthony H. Keeble; Roshni Panchal; Daniel Anthony Mitchell; Peter C. E. Moody; Russell Wallis

Complement activation contributes directly to health and disease. It neutralizes pathogens and stimulates immune processes. Defects lead to immunodeficiency and autoimmune diseases, whereas inappropriate activation causes self-damage. In the lectin and classical pathways, complement is triggered upon recognition of a pathogen by an activating complex. Here we present the first structure of such a complex in the form of the collagen-like domain of mannan-binding lectin (MBL) and the binding domain of its associated protease (MASP-1/-3). The collagen binds within a groove using a pivotal lysine side chain that interacts with Ca(2+)-coordinating residues, revealing the essential role of Ca(2+). This mode of binding is prototypic for all activating complexes of the lectin and classical pathways, and suggests a general mechanism for the global changes that drive activation. The structural insights reveal a new focus for inhibitors and we have validated this concept by targeting the binding pocket of the MASP.

Collaboration


Dive into the Peter C. E. Moody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge