Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emma Whitelaw is active.

Publication


Featured researches published by Emma Whitelaw.


Nature Genetics | 1999

Epigenetic inheritance at the agouti locus in the mouse

Hugh Morgan; Heidi Sutherland; David I. K. Martin; Emma Whitelaw

Epigenetic modifications have effects on phenotype, but they are generally considered to be cleared on passage through the germ line in mammals, so that only genetic traits are inherited. Here we describe the inheritance of an epigenetic modification at the agouti locus in mice. In viable yellow ( Avy/a) mice, transcription originating in an intra-cisternal A particle (IAP) retrotransposon inserted upstream of the agouti gene ( A) causes ectopic expression of agouti protein, resulting in yellow fur, obesity, diabetes and increased susceptibility to tumours. The pleiotropic effects of ectopic agouti expression are presumably due to effects of the paracrine signal on other tissues. Avy mice display variable expressivity because they are epigenetic mosaics for activity of the retrotransposon: isogenic Avy mice have coats that vary in a continuous spectrum from full yellow, through variegated yellow/agouti, to full agouti (pseudoagouti). The distribution of phenotypes among offspring is related to the phenotype of the dam; when an A vy dam has the agouti phenotype, her offspring are more likely to be agouti. We demonstrate here that this maternal epigenetic effect is not the result of a maternally contributed environment. Rather, our data show that it results from incomplete erasure of an epigenetic modification when a silenced Avy allele is passed through the female germ line, with consequent inheritance of the epigenetic modification. Because retrotransposons are abundant in mammalian genomes, this type of inheritance may be common.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission

Vardhman K. Rakyan; Suyinn Chong; Marnie E. Champ; Peter C. Cuthbert; Hugh Morgan; Keith V. K. Luu; Emma Whitelaw

Phenotypic variation that cannot be explained by genetic or environmental heterogeneity has intrigued geneticists for decades. The molecular basis of this phenomenon, however, is largely a mystery. Axin-fused (AxinFu), first identified in 1937, is a classic example of a mammalian allele displaying extremely variable expression states. Here we demonstrate that the presence or absence of its characteristic phenotype, a kinked tail, correlates with differential DNA methylation at a retrotransposon within AxinFu and identify mutant transcripts arising adjacent to the retrotransposon LTR that are likely to be causative of the phenotype. Furthermore, the epigenetic state at AxinFu can be inherited transgenerationally after both maternal and paternal transmission. This is in contrast to epigenetic inheritance at the murine agouti-viable yellow (Avy) allele, which occurs through the female only. Unlike the egg, the sperm contributes very little (if any) cytoplasm to the zygote, and therefore paternal inheritance at AxinFu argues against the possibility that the effects are due to cytoplasmic or metabolic influences. Consistent with the idea of transgenerational inheritance of epigenetic marks, we find that the methylation state of AxinFu in mature sperm reflects the methylation state of the allele in the somatic tissue of the animal, suggesting that it does not undergo epigenetic reprogramming during gametogenesis. Finally, we show that epigenetic inheritance is influenced by strain background. These findings enable us to propose a model for transgenerational epigenetic inheritance in mammals.


Nature Reviews Genetics | 2012

Understanding transgenerational epigenetic inheritance via the gametes in mammals

Lucia Daxinger; Emma Whitelaw

It is known that information that is not contained in the DNA sequence — epigenetic information — can be inherited from the parent to the offspring. However, many questions remain unanswered regarding the extent and mechanisms of such inheritance. In this Review, we consider the evidence for transgenerational epigenetic inheritance via the gametes, including cases of environmentally induced epigenetic changes. The molecular basis of this inheritance remains unclear, but recent evidence points towards diffusible factors, in particular RNA, rather than DNA methylation or chromatin. Interestingly, many cases of epigenetic inheritance seem to involve repeat sequences.


Annual Review of Genomics and Human Genetics | 2008

Transgenerational Epigenetic Effects

Neil A. Youngson; Emma Whitelaw

Transgenerational epigenetic effects include all processes that have evolved to achieve the nongenetic determination of phenotype. There has been a long-standing interest in this area from evolutionary biologists, who refer to it as non-Mendelian inheritance. Transgenerational epigenetic effects include both the physiological and behavioral (intellectual) transfer of information across generations. Although in most cases the underlying molecular mechanisms are not understood, modifications of the chromosomes that pass to the next generation through gametes are sometimes involved, which is called transgenerational epigenetic inheritance. There is a trend for those outside the field of molecular biology to assume that most cases of transgenerational epigenetic effects are the result of transgenerational epigenetic inheritance, in part because of a misunderstanding of the terms. Unfortunately, this is likely to be far from the truth.


Trends in Genetics | 2002

Metastable epialleles in mammals

Vardhman K. Rakyan; Marnie E. Blewitt; Riki Druker; Jost Preis; Emma Whitelaw

There are some mammalian alleles that display the unusual characteristic of variable expressivity in the absence of genetic heterogeneity. It has recently become evident that this is because the activity of these alleles is dependent on their epigenetic state. Interestingly, the epigenetic state is somewhat labile, resulting in phenotypic mosaicism between cells (variegation) and also between individuals (variable expressivity). The establishment of the epigenetic state occurs during early embryogenesis and is a probabilistic event that is influenced by whether the allele is carried on the paternal or maternal alleles. In addition, the epigenetic state determines whether these alleles are dominant. We propose that mammalian alleles with such characteristics should be termed metastable epialleles to distinguish them from traditional alleles. At this stage, it is unclear how common these alleles are, but an appreciation of their existence will aid in their identification.


Nature Genetics | 2001

Retrotransposons as epigenetic mediators of phenotypic variation in mammals

Emma Whitelaw; David I. K. Martin

Phenotypic variation in mammals is frequently attributed to the action of quantitative trait loci (QTL) or the environment, but may also be epigenetic in origin. Here we consider a mechanism for phenotypic variation based on interference of transcription by somatically active retrotransposons. Transcriptionally competent retrotransposons may number in the tens of thousands in mammalian genomes. We propose that silencing of retrotransposons occurs by cosuppression during early embryogenesis, but that this process is imperfect and produces a mosaic pattern of retrotransposon expression in somatic cells. Transcriptional interference by active retrotransposons perturbs expression of neighboring genes in somatic cells, in a mosaic pattern corresponding to activity of each retrotransposon. The epigenotype of retrotransposon activity is reset in each generation, but incomplete resetting can lead to heritable epigenetic effects. The stochastic nature of retrotransposon activity, and the very large number of genes that may be affected, produce subtle phenotypic variations even between genetically identical individuals, which may affect disease risk and be heritable in a non-mendelian fashion.


PLOS Genetics | 2010

Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model.

Nina Kaminen-Ahola; Arttu Ahola; Murat Maga; Kylie-Ann Mallitt; Paul Fahey; Timothy C. Cox; Emma Whitelaw; Suyinn Chong

Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5–8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (Avy), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at Avy. This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the Avy mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than Avy, a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the Avy allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.


Nature Genetics | 2008

SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation

Marnie E. Blewitt; Anne-Valerie Gendrel; Zhenyi Pang; Duncan B. Sparrow; Nadia C Whitelaw; Jeffrey M. Craig; Anwyn Apedaile; Douglas J. Hilton; Sally L. Dunwoodie; Neil Brockdorff; Graham F. Kay; Emma Whitelaw

X-chromosome inactivation is the mammalian dosage compensation mechanism by which transcription of X-linked genes is equalized between females and males. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen on mice for modifiers of epigenetic reprogramming, we identified the MommeD1 (modifier of murine metastable epialleles) mutation as a semidominant suppressor of variegation. MommeD1 shows homozygous female-specific mid-gestation lethality and hypomethylation of the X-linked gene Hprt1, suggestive of a defect in X inactivation. Here we report that the causative point mutation lies in a previously uncharacterized gene, Smchd1 (structural maintenance of chromosomes hinge domain containing 1). We find that SmcHD1 is not required for correct Xist expression, but localizes to the inactive X and has a role in the maintenance of X inactivation and the hypermethylation of CpG islands associated with the inactive X. This finding links a group of proteins normally associated with structural aspects of chromosome biology with epigenetic gene silencing.


PLOS Genetics | 2006

Dynamic Reprogramming of DNA Methylation at an Epigenetically Sensitive Allele in Mice

Marnie E. Blewitt; Nicola Vickaryous; Andras Paldi; Haruhiko Koseki; Emma Whitelaw

There is increasing evidence in both plants and animals that epigenetic marks are not always cleared between generations. Incomplete erasure at genes associated with a measurable phenotype results in unusual patterns of inheritance from one generation to the next, termed transgenerational epigenetic inheritance. The Agouti viable yellow (Avy) allele is the best-studied example of this phenomenon in mice. The Avy allele is the result of a retrotransposon insertion upstream of the Agouti gene. Expression at this locus is controlled by the long terminal repeat (LTR) of the retrotransposon, and expression results in a yellow coat and correlates with hypomethylation of the LTR. Isogenic mice display variable expressivity, resulting in mice with a range of coat colours, from yellow through to agouti. Agouti mice have a methylated LTR. The locus displays epigenetic inheritance following maternal but not paternal transmission; yellow mothers produce more yellow offspring than agouti mothers. We have analysed the DNA methylation in mature gametes, zygotes, and blastocysts and found that the paternally and maternally inherited alleles are treated differently. The paternally inherited allele is demethylated rapidly, and the maternal allele is demethylated more slowly, in a manner similar to that of nonimprinted single-copy genes. Interestingly, following maternal transmission of the allele, there is no DNA methylation in the blastocyst, suggesting that DNA methylation is not the inherited mark. We have independent support for this conclusion from studies that do not involve direct analysis of DNA methylation. Haplo-insufficiency for Mel18, a polycomb group protein, introduces epigenetic inheritance at a paternally derived Avy allele, and the pedigrees reveal that this occurs after zygotic genome activation and, therefore, despite the rapid demethylation of the locus.


Genome Research | 2010

Transgenerational epigenetic inheritance: more questions than answers.

Lucia Daxinger; Emma Whitelaw

Epigenetic modifications are widely accepted as playing a critical role in the regulation of gene expression and thereby contributing to the determination of the phenotype of multicellular organisms. In general, these marks are cleared and re-established each generation, but there have been reports in a number of model organisms that at some loci in the genome this clearing is incomplete. This phenomenon is referred to as transgenerational epigenetic inheritance. Moreover, recent evidence shows that the environment can stably influence the establishment of the epigenome. Together, these findings suggest that an environmental event in one generation could affect the phenotype in subsequent generations, and these somewhat Lamarckian ideas are stimulating interest from a broad spectrum of biologists, from ecologists to health workers.

Collaboration


Dive into the Emma Whitelaw's collaboration.

Top Co-Authors

Avatar

Suyinn Chong

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marnie E. Blewitt

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Neil A. Youngson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alyson Ashe

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nadia C Whitelaw

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nicola Vickaryous

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David I. K. Martin

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel K. Morgan

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge