Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuel Darcq is active.

Publication


Featured researches published by Emmanuel Darcq.


Biological Psychiatry | 2011

Impaired Emotional-Like Behavior and Serotonergic Function During Protracted Abstinence from Chronic Morphine

Celia Goeldner; Pierre-Eric Lutz; Emmanuel Darcq; Thomas Halter; Daniel Clesse; Abdel-Mouttalib Ouagazzal; Brigitte L. Kieffer

BACKGROUND Opiate abuse is a chronic relapsing disorder, and maintaining prolonged abstinence remains a major challenge. Protracted abstinence is characterized by lowered mood, and clinical studies show elevated comorbidity between addiction and depressive disorders. At present, their relationship remains unclear and has been little studied in animal models. Here we investigated emotional alterations during protracted abstinence, in mice with a history of chronic morphine exposure. METHODS C57BL6J mice were exposed to a chronic intermittent escalating morphine regimen (20-100 mg/kg). Physical dependence (naloxone-precipitated withdrawal), despair-related behaviors (tail suspension test), and social behaviors were examined after 1 or 4 weeks of abstinence. Stress hormones and forebrain bioamine levels were analyzed at the end of morphine regimen and after 4 weeks of abstinence. Finally, we examined the effects of chronic fluoxetine during abstinence on morphine-induced behavioral deficits. RESULTS Acute naloxone-induced withdrawal was clearly measurable after 1 week, and became undetectable after 4 weeks. In contrast, social and despair-related behaviors were unchanged after 1 week, but low sociability and despair-like behavior became significant after 4 weeks. Chronic morphine regimen increased both corticosterone levels and forebrain serotonin turnover, but only serotonergic activity in the dorsal raphe remained impaired after 4 weeks. Remarkably, chronic fluoxetine prevented depressive-like behavioral deficits in 4-week abstinent mice. CONCLUSIONS During protracted abstinence, the immediate consequences of morphine exposure attenuate, whereas fluoxetine-sensitive emotional alterations strengthen with time. Our study establishes a direct link between morphine abstinence and depressive-like symptoms and strongly suggests that serotonin dysfunction represents a main mechanism contributing to mood disorders in opiate abstinence.


Behavioural Brain Research | 2015

Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures.

Paul Chu Sin Chung; Annie Boehrer; Aline Stéphan; Audrey Matifas; Grégory Scherrer; Emmanuel Darcq; Katia Befort; Brigitte L. Kieffer

The delta opioid receptor (DOR) has raised much interest for the development of new therapeutic drugs, particularly to treat patients suffering from mood disorders and chronic pain. Unfortunately, the prototypal DOR agonist SNC80 induces mild epileptic seizures in rodents. Although recently developed agonists do not seem to show convulsant properties, mechanisms and neuronal circuits that support DOR-mediated epileptic seizures remain to be clarified. DORs are expressed throughout the nervous system. In this study we tested the hypothesis that SNC80-evoked seizures stem from DOR activity at the level of forebrain GABAergic transmission, whose inhibition is known to facilitate the development of epileptic seizures. We generated a conditional DOR knockout mouse line, targeting the receptor gene specifically in GABAergic neurons of the forebrain (Dlx-DOR). We measured effects of SNC80 (4.5, 9, 13.5 and 32 mg/kg), ARM390 (10, 30 and 60 mg/kg) or ADL5859 (30, 100 and 300 mg/kg) administration on electroencephalograms (EEGs) recorded in Dlx-DOR mice and their control littermates (Ctrl mice). SNC80 produced dose-dependent seizure events in Ctrl mice, but these effects were not detected in Dlx-DOR mice. As expected, ARM390 and ADL5859 did not trigger any detectable change in mice from both genotypes. These results demonstrate for the first time that SNC80-induced DOR activation induces epileptic seizures via direct inhibition of GABAergic forebrain neurons, and supports the notion of differential activities between first and second-generation DOR agonists.


Biological Psychiatry | 2017

Translating the Habenula-From Rodents to Humans.

Laura-Joy Boulos; Emmanuel Darcq; Brigitte L. Kieffer

The habenula (Hb) is a central structure connecting forebrain to midbrain regions. This microstructure regulates monoaminergic systems, notably dopamine and serotonin, and integrates cognitive with emotional and sensory processing. Early preclinical data have described Hb as a brain nucleus activated in anticipation of aversive outcomes. Evidence has now accumulated to show that the Hb encodes both rewarding and aversive aspects of external stimuli, thus driving motivated behaviors and decision making. Human Hb research is still nascent but develops rapidly, alongside with the growth of neuroimaging and deep brain stimulation techniques. Not surprisingly, Hb dysfunction has been associated with psychiatric disorders, and studies in patients have established evidence for Hb involvement in major depression, addiction, and schizophrenia, as well as in pain and analgesia. Here, we summarize current knowledge from animal research and overview the existing human literature on anatomy and function of the Hb. We also discuss challenges and future directions in targeting this small brain structure in both rodents and humans. By combining animal data and human experimental studies, this review addresses the translational potential of preclinical Hb research.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome.

Anna E. Mechling; Tanzil Arefin; Hsu-Lei Lee; Thomas Bienert; Marco Reisert; Sami Ben Hamida; Emmanuel Darcq; Aliza Toby Ehrlich; Claire Gaveriaux-Ruff; Maxime Parent; Pedro Rosa-Neto; Juergen Hennig; Dominik von Elverfeldt; Brigitte L. Kieffer; Laura-Adela Harsan

Significance Mice manipulated by targeted deletion of a specific brain gene show diverse pathological phenotypes, apparent, for example, in behavioral experiments. To explain observed findings, connectome genetics attempts to uncover how brain functional connectivity is affected by genetics. However the causal impact of a single gene on whole-brain networks is still unclear. Here the sole targeted deletion of the mu opioid receptor gene (Oprm1), the main target for morphine, induced widespread remodeling of brain functional connectome in mice. The strongest perturbations occurred within the so-called reward/aversion-circuitry, predominantly influencing the negative affect centers. We present a hypothesis-free analysis of combined structural and functional connectivity data obtained via MRI of the living mouse brain, and identify a specific Oprm1 gene-to-network signature. Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene’s activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Biological Psychiatry | 2015

A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons.

Paul Chu Sin Chung; Helen L. Keyworth; Elena Martín-García; Pauline Charbogne; Emmanuel Darcq; Alexis Bailey; Dominique Filliol; Audrey Matifas; Grégory Scherrer; Abdel-Mouttalib Ouagazzal; Claire Gaveriaux-Ruff; Katia Befort; Rafael Maldonado; Ian Kitchen; Brigitte L. Kieffer

BACKGROUND The delta opioid receptor (DOR) is broadly expressed throughout the nervous system; it regulates chronic pain, emotional responses, motivation, and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. We used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. METHODS We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1(fl/fl) (Dlx-DOR) mice and tested main central DOR functions through behavioral testing. RESULTS The DOR proteins were strongly deleted in olfactory bulb and striatum and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity, and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. The Dlx-DOR mice showed lower levels of anxiety in the elevated plus maze, opposing the known high anxiety in constitutive DOR knockout animals. Also, Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos protein staining after novelty suppressed feeding was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. CONCLUSIONS We demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. In emotional responses, DORs exert dual anxiolytic and anxiogenic roles, both of which may have implications in the area of anxiety disorders.


Neuropsychopharmacology | 2012

RSK2 Signaling in Medial Habenula Contributes to Acute Morphine Analgesia

Emmanuel Darcq; Katia Befort; Pascale Koebel; Solange Pannetier; Megan K. Mahoney; Claire Gaveriaux-Ruff; André Hanauer; Brigitte L. Kieffer

It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor–RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex.


Learning & Memory | 2011

RSK2 signaling in brain habenula contributes to place aversion learning

Emmanuel Darcq; Pascale Koebel; Carolina Del Boca; Solange Pannetier; Anne-Sophie Kirstetter; Jean-Marie Garnier; André Hanauer; Katia Befort; Brigitte L. Kieffer

RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. Rsk2 gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that mrsk2 knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and emotional processing. Virally mediated shRNA-RSK2 knockdown in the habenula, whose involvement in cognition is receiving increasing attention, also ablated contextual conditioning. RSK2 signaling in the habenula, therefore, is essential for this task. Our study reveals a novel role for RSK2 in cognitive processes and uncovers the critical implication of an intriguing brain structure in place aversion learning.


Biological Psychiatry | 2017

Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food

Pauline Charbogne; Olivier Gardon; Elena Martín-García; Helen L. Keyworth; Aya Matsui; Anna E. Mechling; Thomas Bienert; Taufiq Nasseef; Anne Robé; Luc Moquin; Emmanuel Darcq; Sami Ben Hamida; Patricia Robledo; Audrey Matifas; Katia Befort; Claire Gaveriaux-Ruff; Laura-Adela Harsan; Dominik von Elverfeldt; Jürgen Hennig; Alain Gratton; Ian Kitchen; Alexis Bailey; Veronica A. Alvarez; Rafael Maldonado; Brigitte L. Kieffer

BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.


Frontiers in Neuroscience | 2016

BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

Kelsey Moore; Dan Madularu; Sade Iriah; Jason R. Yee; Praveen Kulkarni; Emmanuel Darcq; Brigitte L. Kieffer; Craig F. Ferris

Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain signature that should, in the future, be compared to other μ opioid agonists.


Nature Reviews Neuroscience | 2018

Opioid receptors: drivers to addiction?

Emmanuel Darcq; Brigitte L. Kieffer

Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.The opioid system is central to addiction. Darcq and Kieffer review the role of these receptors in the addiction neurocircuitry, ask whether opioid receptors can be targeted to kill pain without addiction and discuss studies that bridge the translational gap in the field.

Collaboration


Dive into the Emmanuel Darcq's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge