Alain Gratton
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alain Gratton.
The Journal of Neuroscience | 2004
Frances A. Champagne; Pablo Chretien; Carl W. Stevenson; Tie-Yuan Zhang; Alain Gratton; Michael J. Meaney
Lactating rats exhibit stable individual differences in pup licking/grooming. We used in vivo voltammetry to monitor changes in extracellular dopamine (DA) in the nucleus accumbens (n. Acc) shell of lactating rats interacting with pups and found that (1) the DA signal increased significantly with pup licking/grooming; (2) the onset of such increases preceded pup licking/grooming; and (3) the magnitude and duration of the increase in the DA signal were significantly correlated with the duration of the licking/grooming bout. In females characterized on the basis of behavioral observations as high-licking/grooming mothers, the magnitude of the increase in the DA signal associated with licking/grooming was significantly greater than in low-licking/grooming dams. Dopamine transporter binding in the n. Acc was increased in low-compared with high-licking/grooming mothers. Injection of the selective DA uptake inhibitor GBR 12909 [1-(2-(Bis-(4-fluorophenyl)methoxy)ethyl)-4-(3 phenypropyl)piperazine dihydrochloride] (5 mg/kg, s.c.) increased the DA signal in the n. Acc and pup licking/grooming in low-licking/grooming mothers to levels comparable with those observed in high-licking/grooming dams. Receptor autoradiographic studies showed elevated levels of D1 and D3 receptors in the n. Acc shell region in high-licking/grooming dams. These results suggest that high- and low-licking/grooming dams differ in mesolimbic dopaminergic activity associated with mother-pup interactions. Such differences may serve as neural substrates for individual differences in the motivational component of maternal behavior.
Psychoneuroendocrinology | 2002
Michael J. Meaney; Wayne G. Brake; Alain Gratton
Repeated periods of maternal separation in the early life of rats decreased dopamine transporter expression and significantly increased dopamine responses to stress, and behavioral responses to either stress or cocaine. As adults, maternal separation animals showed increased sensitivity to the effects of cocaine on locomotor activity and greater sensitivity to stress-induced sensitization to the effects of amphetamine on locomotor activity. These findings raise the possibility that in addition to effects on stress reactivity, early life events might dispose individuals to illness in later life through effects on very specific neurotransmitter systems.
European Journal of Neuroscience | 2004
Wayne G. Brake; Tie-Yuan Zhang; Josie Diorio; Michael J. Meaney; Alain Gratton
While many experiment with drugs, relatively few individuals develop a true addiction. We hypothesized that, in rats, such individual differences in the actions of addictive drugs might be determined by postnatal rearing conditions. To test this idea, we investigated whether stimulant‐ and stress‐induced activation of nucleus accumbens dopamine transmission and dopamine‐dependent behaviours might differ among adults rats that had been either repeatedly subjected to prolonged maternal separation or a brief handling procedure or left undisturbed (non‐handled) during the first 14 days of life. We found that, in comparison with their handled counterparts, maternally separated and non‐handled animals are hyperactive when placed in a novel setting, display a dose‐dependent higher sensitivity to cocaine‐induced locomotor activity and respond to a mild stressor (tail‐pinch) with significantly greater increases in nucleus accumbens dopamine levels. In addition, maternally separated animals were found to sensitize to the locomotor stimulant action of amphetamine when repeatedly stressed under conditions that failed to sensitize handled and non‐handled animals. Finally, quantitative receptor autoradiography revealed a lower density of nucleus accumbens‐core and striatal dopamine transporter sites in maternally separated animals. Interestingly, we also found greatly reduced D3 dopamine receptor binding and mRNA levels in the nucleus accumbens‐shell of handled animals. Together, these findings provide compelling evidence that disruptions in early postnatal rearing conditions can lead to profound and lasting changes in the responsiveness of mesocorticolimbic dopamine neurons to stress and psychostimulants, and suggest a neurobiological basis for individual differences in vulnerability to compulsive drug taking.
Psychoneuroendocrinology | 2002
Ron M. Sullivan; Alain Gratton
In recent years, dysfunction of hypothalamic-pituitary-adrenal (HPA) axis function has been implicated in a wide variety of psychiatric conditions. The importance of this system in responding to and coping with stress is well documented, and the integrity of such systems is of obvious significance to good mental health. The prefrontal cortex (PFC) is also heavily implicated in numerous psychopathological conditions. There is thus a growing interest in the potential role the PFC might play in regulating HPA function, and whether abnormalities of these systems are linked. The present paper reviews a number of recent animal studies which have attempted to elucidate the role of the PFC in regulation of HPA axis function, and how these systems may interact. It is concluded that the PFC is involved both in activating HPA responses to stress and in the negative feedback regulation of this system. Cerebral laterality is an important feature of this regulation, with the right PFC being most directly linked to stress-regulatory systems. On this basis, a number of parallels are drawn to the human literature, where asymmetrical disturbances in PFC activity may help explain associated patterns of HPA dysfunction.
PLOS ONE | 2009
Adolfo Sequeira; Firoza Mamdani; Carl Ernst; Marquis P. Vawter; William E. Bunney; Veronique Lebel; Sonia Rehal; Tim Klempan; Alain Gratton; Chawki Benkelfat; Guy A. Rouleau; Naguib Mechawar; Gustavo Turecki
Background Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations. Methodology/Principal Findings We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU) and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with microarray data. Conclusions/Significance The observed results represent the first overview of global expression changes in brains of suicide victims with and without major depression and suggest a global brain alteration of GLU and GABA receptor subunit genes in these conditions.
Endocrinology | 2010
Dara Shahrokh; Tie-Yuan Zhang; Josie Diorio; Alain Gratton; Michael J. Meaney
Variations in maternal behavior among lactating rats associate with differences in estrogen-oxytocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and increased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on dopamine release within the mesocorticolimbic dopamine system and are consistent with previous reports of oxytocin-dopamine interactions in the establishment and maintenance of social bonds.
Archives of General Psychiatry | 2009
Carl Ernst; Vesselina Deleva; Xiaoming Deng; Adolfo Sequeira; Amanda Pomarenski; Tim Klempan; Neil A. Ernst; Rémi Quirion; Alain Gratton; Moshe Szyf; Gustavo Turecki
CONTEXT Although most of the effort to understand the neurobiology of depressive states and suicide has focused on neuronal processes, recent studies suggest that astroglial dysfunction may play an important role. A truncated variant of the tropomyosin-related kinase B (TrkB.T1) is expressed in astrocytes, and brain-derived neurotrophic factor-TrkB signaling has been linked to mood disorders. OBJECTIVE To test the hypothesis that TrkB.T1 expression is downregulated in suicide completers and that this downregulation is mediated by an epigenetic process. DESIGN Postmortem case-control study. Patients, Setting, and MAIN OUTCOME MEASURES Thirty-nine French Canadian men underwent screening at the Douglas Hospital Research Institute using the HG-U133 plus 2 microarray chip. Nine frontal cortical regions and the cerebellum were assessed using a microarray screening approach for extreme expression differences across subjects and a conventional screening approach. Results were validated by quantitative polymerase chain reaction and Western blot analyses. Animal experiments were performed to control for drug and alcohol effects. Genetic and epigenetic studies were performed by means of direct sequencing and bisulfite mapping. RESULTS We found that 10 of 28 suicide completers (36%) demonstrated significant decreases in different probe sets specific to TrkB.T1 in Brodmann areas 8 and 9. These findings were generalizable to other frontal regions but not to the cerebellum. The decrease in TrkB expression was specific to the T1 splice variant. Our results were not accounted for by substance comorbidity or by reduction in astrocyte number. We found no effect of genetic variation in a 2500-base pair promoter region or at relevant splice junctions; however, we detected an effect of methylation state at particular CpG dinucleotides on TrkB.T1 expression. CONCLUSION A reduction of TrkB.T1 expression in the frontal cortex of a subpopulation of suicide completers is associated with the methylation state of the promoter region.
Brain Research | 1994
Eugene A. Kiyatkin; Alain Gratton
High-speed chronoamperometry and monoamine-selective electrochemical probes were used to monitor, during each of 5-6 consecutive daily sessions, changes in dopamine (DA)-related oxidation current in nucleus accumbens (NAcc) of rats lever-pressing for a food reward. In trained animals, the first lever-press of each session was preceded by a gradual increase in the electrochemical signal and was followed, during the period the animals retrieved and consumed the food pellet, by a further increase that peaked momentarily when the animal pressed the lever again. This pattern of increases accompanied the initial 1-3 lever-presses of each session after which biphasic changes in electrochemical signal began to emerge. In these cases, each lever-press was preceded by a gradual increase in signal that peaked at the moment the animals pressed the lever and was followed by an abrupt decrease as the animals retrieved and consumed the food pellet. The signal would then start to increase gradually again to peak at a slightly higher level at the moment of the next lever-press. Thus, during the initial part of the session there was a net increment in signal with each lever-press which resulted in a gradual overall elevation of the signal. The increments, however, became progressively smaller as the decrease in signal that followed each lever-press became more pronounced; this slowed the overall rate of increase of the signal until it eventually reached a plateau and remained relatively stable at that level as long as the animals ate earned food pellets. On several occasions, lever-presses were reinforced by twice the usual amount of food. In these cases, lever-presses were preceded by similar increases but were followed by more pronounced and longer-lasting decreases in electrochemical signal. In contrast, non-reinforced lever-presses were followed by less pronounced decreases in signal which then increased more rapidly than was observed after reinforced lever-presses. Toward the end of the session, animals would often ignore earned pellets of food. In these cases, no increases preceded and gradual, rather than abrupt, decreases in signal followed each lever-press. Eventually, the animals ceased to lever-press entirely and this period was accompanied by a gradual return of the electrochemical signal toward baseline values. The tonic elevation of DA levels suggested by the present electrochemical results is in general agreement with previous reports of increased DA efflux in NAcc of animals engaged in feeding and feeding-related behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)
Neuroscience | 2000
Wayne G. Brake; Gonzalo Flores; Darlene D. Francis; Michael J. Meaney; Lalit K. Srivastava; Alain Gratton
The medial prefrontal cortex modulates the nucleus accumbens dopamine response to stress and has been implicated in feedback regulation of hypothalamic-pituitary-adrenal axis activation by stress. Here we report on the effects of bilateral neonatal (postnatal day 7) ibotenate-induced lesions to the medial prefrontal cortex on nucleus accumbens dopamine and neuroendocrine function in adult rats. Voltammetry was used to monitor the dopamine response to each of five, once-daily exposures to tail-pinch stress whereas alterations in neuroendocrine function were determined from the plasma corticosterone response to a single 20-min episode of restraint stress. Potential lesion-induced deficits in sensory-motor gating were assessed by measuring prepulse inhibition of the acoustic startle response before and after repeated stress. Our data show that each daily stress episode elicited larger and longer-lasting dopamine increases in prefrontal cortex-lesioned animals than in sham-lesioned controls. Furthermore, greater stress-induced elevations in plasma corticosterone were seen in lesioned animals than in their sham-lesioned counterparts. However, while repeated stress potentiated startle responses in animals of both groups, there was no effect of lesion on the amplitude or on prepulse inhibition of the startle response.Together, these findings indicate that neonatal prefrontal cortex damage can lead to changes in mesolimbic dopamine and neuroendocrine function during adulthood. They also add to a growing body of experimental and clinical evidence implicating abnormal prefrontal cortex neuronal development in the pathophysiology of schizophrenia and other disorders linked to central dopamine dysfunction.
The Journal of Neuroscience | 2005
Tie-Yuan Zhang; P. Chrétien; Michael J. Meaney; Alain Gratton
In rats, naturally occurring variations in maternal care contribute to the development of individual differences in the behavioral and neuroendocrine responses to stress during adulthood. The dopamine (DA) projection to the medial prefrontal cortex (mPFC) plays an important role in mediating stress responsivity and is thought to be involved also in regulating sensorimotor gating. In the present study, we compared prepulse inhibition (PPI) of acoustic startle as well as the left and right mPFC DA stress responses in the adult offspring of high- and low-licking/grooming (LG) dams. Our data indicate that the offspring of low-LG animals are impaired on measures of PPI compared with high-LG animals. We also observed in low-LG animals a significant blunting of the mPFC DA stress responses that was lateralized to the right hemisphere, whereas in high-LG animals, the left and right mPFC DA stress responses were equally attenuated. Although mPFC levels of DA transporter did not differ between the two groups of animals, mPFC levels of catechol-O-methyl transferase immunoreactivity of low-LG animals were significantly lower than those of high-LG animals. These data provide evidence that variations in maternal care can lead to lasting changes in mPFC DA responsivity to stress and suggest the possibility that such changes in mesocorticolimbic DA function can also lead to deficits in sensorimotor gating.