Emmanuel E. Etim
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuel E. Etim.
The Astrophysical Journal | 2017
Prasanta Gorai; Ankan Das; Amaresh Das; Bhalamurugan Sivaraman; Emmanuel E. Etim; Sandip K. Chakrabarti
It has been pointed out by various astronomers that very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analogue of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol is recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analogue of methanol), has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analogue of ethanol) has been claimed to be observed in Sgr B2(N2) though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogues. Based on our quantum chemical calculation and chemical modeling, we find that ‘Tg’ conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist its future detection in the Interstellar medium (ISM). Subject headings: Astrochemistry, spectra, ISM: molecules, ISM: abundances, ISM: evolution, methods: numerical
The Astrophysical Journal | 2016
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; Sandip K. Chakrabarti; E. Arunan
In an effort to further our interest in understanding basic chemistry of interstellar molecules, we carry out here an extensive investigation of the stabilities of interstellar carbon chains; Cn, H2Cn, HCnN and CnX (X=N, O, Si, S, H, P, H-, N-). These sets of molecules accounts for about 20% of all the known interstellar and circumstellar molecules, their high abundances therefore demand a serious attention. High level ab initio quantum chemical calculations are employed to accurately estimate enthalpy of formation, chemical reactivity indices; global hardness and softness; and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd number carbon chains. Interstellar chemistry is not actually driven by the thermodynamics, it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.
The Astrophysical Journal | 2018
Milan Sil; Prasanta Gorai; Ankan Das; Bratati Bhat; Emmanuel E. Etim; Sandip K. Chakrabarti
We consider six isomeric groups (CH3N, CH5N, C2H5N, C2H7N, C3H7N and C3H9N) to review the presence of amines and aldimines within the interstellar medium (ISM). Each of these groups contains at least one aldimine or amine. Methanimine (CH2NH) from CH3N and methylamine (CH3NH2) from CH 5 N isomeric group were detected a few decades ago. Recently, the presence of ethanimine (CH3CHNH) from C2H5N isomeric group has been discovered in the ISM. This prompted us to investigate the possibility of detecting any aldimine or amine from the very next three isomeric groups in this sequence: C2H7N, C3H7N and C3H9N. We employ high-level quantum chemical calculations to estimate accurate energies of all the species. According to enthalpies of formation, optimized energies, and expected intensity ratio, we found that ethylamine (precursor of glycine) from C2H7N isomeric group, (1Z)-1-propanimine from C3H7N isomeric group, and trimethylamine from C3H9N isomeric group are the most viable candidates for the future astronomical detection. Based on our quantum chemical calculations and from other approximations (from prevailing similar types of reactions), a complete set of reaction pathways to the synthesis of ethylamine and (1Z)-1-propanimine is prepared. Moreover, a large gas-grain chemical model is employed to study the presence of these species in the ISM. Our modeling results suggest that ethylamine and (1Z)-1-propanimine could efficiently be formed in hot-core regions and could be observed with present astronomical facilities. Radiative transfer modeling is also implemented to additionally aid their discovery in interstellar space.
European Physical Journal D | 2017
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; E. Arunan
Abstract The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the interstellar medium (ISM) and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers; tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region. Graphical abstract
Astrophysics and Space Science | 2017
Emmanuel E. Etim; E. Arunan
European Physical Journal Plus | 2016
Emmanuel E. Etim; E. Arunan
Advances in Space Research | 2017
Emmanuel E. Etim; E. Arunan
Astrophysics and Space Science | 2018
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; E. Arunan
Advances in Space Research | 2018
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; Sandip K. Chakrabarti; E. Arunan
Science Trends | 2018
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; Sandip K. Chakrabarti; E. Arunan