Prasanta Gorai
Indian Centre for Space Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prasanta Gorai.
The Astrophysical Journal | 2015
Ankan Das; Liton Majumdar; Dipen Sahu; Prasanta Gorai; Bhalamurugan Sivaraman; Sandip K. Chakrabarti
Methyl acetate (CH_3COOCH_3) has been recently observed by IRAM 30 m radio telescope in Orion though the presence of its deuterated isotopomers is yet to be confirmed. We therefore study the properties of various forms of methyl acetate, namely, CH_3COOCH_3, CH_2DCOOCH_3 and CH_3COOCH_2D. Our simulation reveals that these species could be produced efficiently both in gas as well as in ice phases. Production of methyl acetate could follow radical-radical reaction between acetyl (CH_3CO) and methoxy (CH_3O) radicals. To predict abundances of CH_3COOCH_3 along with its two singly deuterated isotopomers and its two isomers (ethyl formate and hydroxyacetone), we prepare a gas-grain chemical network to study chemical evolution of these molecules. Since gas phase rate coefficients for methyl acetate and its related species were unknown, either we consider similar rate coefficients for similar types of reactions (by following existing data bases) or we carry out quantum chemical calculations to estimate the unknown rate coefficients. For the surface reactions, we use adsorption energies of reactants from some earlier studies. Moreover, we perform quantum chemical calculations to obtain spectral properties of methyl acetate in infrared and sub-millimeter regions. We prepare two catalog files for the rotational transitions of CH_2DCOOCH_3 and CH_3COOCH_2D in JPL format, which could be useful for their detection in regions of interstellar media where CH_3COOCH_3 has already been observed.
The Astrophysical Journal | 2017
Prasanta Gorai; Ankan Das; Amaresh Das; Bhalamurugan Sivaraman; Emmanuel E. Etim; Sandip K. Chakrabarti
It has been pointed out by various astronomers that very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analogue of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol is recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analogue of methanol), has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analogue of ethanol) has been claimed to be observed in Sgr B2(N2) though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogues. Based on our quantum chemical calculation and chemical modeling, we find that ‘Tg’ conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist its future detection in the Interstellar medium (ISM). Subject headings: Astrochemistry, spectra, ISM: molecules, ISM: abundances, ISM: evolution, methods: numerical
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2017
S. Pavithraa; Rabin Rajan J. Methikkalam; Prasanta Gorai; J.-I. Lo; Ankan Das; B. N. Raja Sekhar; T. Pradeep; B.-M. Cheng; Nigel J. Mason; Bhalamurugan Sivaraman
Here we report the first evidence for a reversible phase change in an ethanethiol ice prepared under astrochemical conditions. InfraRed (IR) spectroscopy was used to monitor the morphology of the ice using the SH stretching vibration, a characteristic vibration of thiol molecules. The deposited sample was able to switch between amorphous and crystalline phases repeatedly under temperature cycles between 10K and 130K with subsequent loss of molecules in every phase change. Such an effect is dependent upon the original thickness of the ice. Further work on quantitative analysis is to be carried out in due course whereas here we are reporting the first results obtained.
The Astrophysical Journal | 2016
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; Sandip K. Chakrabarti; E. Arunan
In an effort to further our interest in understanding basic chemistry of interstellar molecules, we carry out here an extensive investigation of the stabilities of interstellar carbon chains; Cn, H2Cn, HCnN and CnX (X=N, O, Si, S, H, P, H-, N-). These sets of molecules accounts for about 20% of all the known interstellar and circumstellar molecules, their high abundances therefore demand a serious attention. High level ab initio quantum chemical calculations are employed to accurately estimate enthalpy of formation, chemical reactivity indices; global hardness and softness; and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd number carbon chains. Interstellar chemistry is not actually driven by the thermodynamics, it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.
The Astrophysical Journal | 2018
Milan Sil; Prasanta Gorai; Ankan Das; Bratati Bhat; Emmanuel E. Etim; Sandip K. Chakrabarti
We consider six isomeric groups (CH3N, CH5N, C2H5N, C2H7N, C3H7N and C3H9N) to review the presence of amines and aldimines within the interstellar medium (ISM). Each of these groups contains at least one aldimine or amine. Methanimine (CH2NH) from CH3N and methylamine (CH3NH2) from CH 5 N isomeric group were detected a few decades ago. Recently, the presence of ethanimine (CH3CHNH) from C2H5N isomeric group has been discovered in the ISM. This prompted us to investigate the possibility of detecting any aldimine or amine from the very next three isomeric groups in this sequence: C2H7N, C3H7N and C3H9N. We employ high-level quantum chemical calculations to estimate accurate energies of all the species. According to enthalpies of formation, optimized energies, and expected intensity ratio, we found that ethylamine (precursor of glycine) from C2H7N isomeric group, (1Z)-1-propanimine from C3H7N isomeric group, and trimethylamine from C3H9N isomeric group are the most viable candidates for the future astronomical detection. Based on our quantum chemical calculations and from other approximations (from prevailing similar types of reactions), a complete set of reaction pathways to the synthesis of ethylamine and (1Z)-1-propanimine is prepared. Moreover, a large gas-grain chemical model is employed to study the presence of these species in the ISM. Our modeling results suggest that ethylamine and (1Z)-1-propanimine could efficiently be formed in hot-core regions and could be observed with present astronomical facilities. Radiative transfer modeling is also implemented to additionally aid their discovery in interstellar space.
Molecular Astrophysics | 2017
Prasanta Gorai; Ankan Das; Liton Majumdar; Sandip K. Chakrabarti; Bhalamurugan Sivaraman; Eric Herbst
Abstract Propargyl alcohol (HC 2 CH 2 OH, PA) has yet to be observed in the interstellar medium (ISM) although one of its stable isomers, propenal (CH 2 CHCHO), has already been detected in Sagittarius B2(N) with the 100-meter Green Bank Telescope in the frequency range 18 − 26 GHz. In this paper, we investigate the formation of propargyl alcohol along with one of its deuterated isotopomers, HC 2 CH 2 OD (OD-PA), in a dense molecular cloud. Various pathways for the formation of PA in the gas and on ice mantles surrounding dust particles are discussed. We use a large gas-grain chemical network to study the chemical evolution of PA and its deuterated isotopomer. Our results suggest that gaseous HC 2 CH 2 OH can most likely be detected in hot cores or in collections of hot cores such as the star-forming region Sgr B2(N). A simple LTE (Local thermodynamic equilibrium) radiative transfer model is employed to check the possibility of detecting PA and OD-PA in the millimeter-wave regime. In addition, we have carried out quantum chemical calculations to compute the vibrational transition frequencies and intensities of these species in the infrared for perhaps future use in studies with the James Webb Space Telescope (JWST).
European Physical Journal D | 2017
Emmanuel E. Etim; Prasanta Gorai; Ankan Das; E. Arunan
Abstract The astronomical observation of isopropyl cyanide further stresses the link between the chemical composition of the interstellar medium (ISM) and molecular composition of the meteorites in which there is a dominance of branched chain amino acids as compared to the straight. However, observations of more branched chain molecules in ISM will firmly establish this link. In the light of this, we have considered C5H9N isomeric group in which the next higher member of the alkyl cyanide and other branched chain isomers belong. High-level quantum chemical calculations have been employed in estimating accurate energies of these isomers. From the results, the only isomer of the group that has been astronomically searched, n-butyl cyanide is not the most stable isomer and therefore, which might explain why its search could only yield upper limits of its column density without a successful detection. Rather, the two most stable isomers of the group are the branched chain isomers; tert-butylnitrile and isobutyl cyanide. Based on the rotational constants of these isomers, it is found that the expected intensity of tert-butylnitrile is the maximum among this isomeric group. Thus, this is proposed as the most probable candidate for astronomical observation. A simple LTE (local thermodynamic equilibrium) modelling has also been carried out to check the possibility of detecting tert-butyl cyanide in the millimetre-wave region. Graphical abstract
Astrophysics and Space Science | 2015
Liton Majumdar; Prasanta Gorai; Ankan Das; Sandip K. Chakrabarti
Work on the chemical evolution of pre-biotic molecules remains incomplete since the major obstacle is the lack of adequate knowledge of rate coefficients of various reactions which take place in interstellar conditions. In this work, we study the possibility of forming three pyrimidine bases, namely, cytosine, uracil and thymine in interstellar regions. Our study reveals that the synthesis of uracil from cytosine and water is quite impossible under interstellar circumstances. For the synthesis of thymine, reaction between uracil and :CH2
Astrophysical Journal Supplement Series | 2018
Ankan Das; Milan Sil; Prasanta Gorai; Sandip K. Chakrabarti; Jean-Christophe Loison
:\mathrm{CH}_{2}
European Physical Journal D | 2017
Milan Sil; Prasanta Gorai; Ankan Das; Dipen Sahu; Sandip K. Chakrabarti
is investigated. Since no other relevant pathways for the formation of uracil and thymine were available in the literature, we consider a large gas-grain chemical network to study the chemical evolution of cytosine in gas and ice phases. Our modeling result shows that cytosine would be produced in cold, dense interstellar conditions. However, presence of cytosine is yet to be established. We propose that a new molecule, namely, C4N3OH5